首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used gigahertz frequency-domain fluorometry to examine the tyrosyl fluorescence intensity and anisotropy decays of the single-tyrosine cyclic peptide hormones oxytocin and vasopressin. Acrylamide quenching and a distance-dependent quenching model for collisional quenching were used to evaluate the extent of tyrosyl exposure to the quencher and to provide increased resolution of the picosecond anisotropy decays. Analysis of the intensity decays using a lifetime distribution model shows different distributions for oxytocin and vasopressin. We found that the tyrosyl fluorescence of lysine-vasopressin, as revealed both by the lifetime Stern-Volmer plots and from the quenching analysis, is quenched more effectively than oxytocin. ForN-acetyltyrosinamide (NATyrA), oxytocin, and lysine-vasopressin, we recovered apparent diffusion coefficients for quenching of 4.7×10–6, 0.44×10–6, and 4.3×10–6 cm2/s, respectively, the lower value for oxytocin suggesting a shielded environment for its tyrosyl residue. Tyrosyl anisotropy decays were recovered by global analysis of progressively quenched samples. Compared with oxytocin, vasopressin displayed a longer correlation time for overall rotational diffusion and a higher amplitude for picosecond segmented motions of its tyrosyl residue. All the data are consistent with a more extended and flexible solution structure for vasopressin than for oxytocin.Dedicated to Professor Alfons Kawski on the occasion of his 65th birthday.  相似文献   

2.
The end-to-end distance distribution of a flexible molecule was recovered from steady-state fluorescence energy transfer measurements using the method suggested by Cantor and Pechukas (Proc. Natl. Acad. Sci. USA 68, 2099–2101, 1971). In this method, the Förster distance (R 0) is varied by attaching different donor-acceptor (D-A) pairs to the flexible linker of interest. Distance distributions are then recovered from energy transfer efficiency measurements on the set of D-A pairs with differentR 0 values. Thirteen D-A pair compounds were synthesized withR 0 values ranging from 6 to 32 Å. Each compound contained a tryptamine donor linked by an alkyl chain (10 carbons) to 1 of 13 acceptors. Using these compounds, we have experimentally confirmed the Cantor and Pechukas method for recovering distance distributions. The measured transfer efficiencies, as a function ofR 0, were fit to the transfer efficiencies predicted for both Gaussian and skewed Gaussian distance distributions. The data support the existence of a skewed Gaussian distribution, and we believe that this is the first experimental observation of an asymmetric distribution for a flexible molecule using fluorescence resonance energy transfer measurements. Finally, the experimentally recovered distance distribution was found to be in good agreement with the distribution predicted from the rotational isomeric state model of Flory (Statistical Mechanics of Chain Molecules, John Wiley & Sons, New York, 1969, Chaps. 1, 3, and 5) but not with the predicted distribution for a freely rotating or freely jointed chain.  相似文献   

3.
We report observation of high quantum yield, long-lifetime fluorescence from a red dye BO-PRO-3 excited by resonance energy transfer (RET). The acceptor fluorescence was highly enhanced upon binding to the donor-labeled DNA. A ruthenium complex (Ru) was chosen as a donor in this system because of its long fluorescence lifetime. Both donor and acceptor were non-covalently bound to DNA. Emission from the donor-acceptor system (DA) at wavelengths exceeding 600 nm still preserves the long-lifetime component of the Ru donor, retaining average fluorescence lifetimes in the range of 30–50 ns. Despite the low quantum yield of the Ru donor in the absence of acceptor, its overall quantum yield of the DA pair was increased by energy transfer to the higher quantum yield acceptor BO-PRO-3. The wavelength-integrated intensity of donor and acceptor bound to DNA was many-fold greater than the intensity of the donor and acceptor separately bound to DNA. The origin of this effect is due to an efficient energy transfer from the donor, competing with non-radiative depopulation of the donor excited state. The distinctive features of DA complexes can be used in the development of a new class of engineered luminophores that display both long lifetime and long-wavelength emission. Similar DA complexes can be applied as proximity indicators, exhibiting strong fluorescence of adjacently located donors and acceptors over the relatively weak fluorescence of separated donors and acceptors.  相似文献   

4.
Application of optically detected ESR to the yellow photoluminescence of Li doped ZnO gives ESR spectra for shallow donor - lithium acceptor pairs, showing that at least a fraction of the yellow emission is donor-acceptor (D-A) luminescence. The distribution of separations rDA gives a spectrum of D-A exchange interactions J which broaden the ESR lines, particularly at high microwave power, where pairs with long excited state lifetimes, that is large rDA, are power saturated.  相似文献   

5.
Photoinduced electron transfer reactions in solution produce two primary geminate radical ion pairs: contact ion pair or exciplex and solvent-separated ion pair. The magnetodynamics of radical ion pairs involves suppression of the spin-evolution between singlet and triplet states of a fraction of solvent-separated ion pairs, the partners of which undergo prior diffusion to attain the distance where exchange interaction is negligible, in the presence of an external low magnetic field of the order of the hyperfine interactions present in the system. This results in an increase in geminate recombination of the singlet solvent-separated ion pairs and enhancement in exciplex luminescence since the precursor radical ion pair is singlet. Although seemingly magnetodynamics is a diffusion-controlled phenomenon that should depend mainly on the dielectric constant of the medium (keeping viscosity almost constant), it is not true for all the exciplex systems since the nature of the magnetic field effect versus medium dielectric curves differ from each other in peak positions, peak heights and onset points. To investigate this differential nature, magnetic field effects among exciplex systems consisting of different derivatives of carbazole as electron donors are compared with a universal acceptor, 1,4-dicyano-benzene, with the pyrene—N,N-dimethylaniline exciplex system as reference. It was found that, apart from the solvent dielectric, the exciplex energy and the bulk effect of the steric constraints present on either donor or acceptor site, regulating the optimum inter-radical distance in the initially formed radical ion pair, are the key factors in controlling the magnetodynamic behaviour.  相似文献   

6.
A novel setup for lifetime microscopy measurements was designed and applied for carrier lifetime mapping in a bulk GaN. Photoexcitation by a picosecond UV pump and detection of time‐resolved free carrier absorption (FCA) images on a CCD camera enabled the mapping of carrier lifetime distribution with a spatial resolution of 5 μm. The spatial variation of lifetime in the bulk HVPE‐grown GaN revealed the presence of different‐size crystalline grains, with lifetime peaking up to 70 ns in the centers of the largest grains (~20 μm in diameter) and dropping to 10 ns in the small ones, while the spatially averaged lifetime was 40 ns. The inhomogeneity was ascribed to the interplay of nonradiative diffusion‐limited recombination at grain boundaries and a bulk lifetime in the crystallite centers. The numerical solution of spatially‐resolved carrier decay rate in the crystallite centers at high injection levels and comparison with experimental data provided a bulk nonradiative recombination time of ~70 ns. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The Py.M (N-3-Pyrene Maleimide) is a dye that covalently binds to reactive amino or sulfhycryl groups to give highly fluorescent protein conjugates. Measurements of luminescence lifetimes and anisotropy decays have been performed with a Phase and Modulation Fluorometer. Complexes of Py.M-antibody (IgG antimouse) and tumoral cells C6 labeled with Py.M have been investigated. The Py.M fluorescence in buffer solution and the protein and cells natural fluorescence have been checked. For Py.M-IgG and labeled cells, the fluorescence decays present interesting behaviours. The least-squares analysis of the experimental results on Py.M-IgG complex points out two lorentzian distributions centered at 74 ns and 11 ns, on the contrary, for the labeled cells, a discrete component at 100 ns and a lorentzian distribution centered at 5 ns are shown. In both systems a weak component lower than 1 ns is observed. The fluorescence decays, mainly the long lifetime one, are very sensitive to oxygen quenching, showing the high efficiency of O2 quenching. For samples N2 bubbled, the lifetime experimental resuits show a decrease of the oxygen accessibility from free probe in solution to Py.M-IgG complex and to labeled cells, compatible with a more compact packing of the probe binding site. The experimental results of anisotropy decays of degassed samples show for Py.M-IgG complexes a long rotation correlation time of about 200 ns at T=5°C, assigned to overall rotation of the protein, besides shorter correlation times attributable to inner protein motions. For labeled cells, the long rotation correlation time becomes of the order of 580 ns confirming a progressive increase of the stabilization of the binding site.  相似文献   

8.
Monte Carlo simulations of chain conformations and the diffusion equation were used to analyze the fluorescence kinetics of short polymer chains labeled with a probe and a quencher at opposite ends. In simulations, three chain models were considered: an ideal chain (without volume interactions); a self-avoiding chain taking into account the exclusive volume effect; and a self-avoiding chain with limited flexibility between nearest segments. For each model, end-to-end distance distribution functions were obtained, which were different from Gaussian ones. The distribution functions were used in a diffusion equation to simulate the fluorescence kinetics of the probe affected by intramolecular end-to-end collisions of short chains. The kinetics has been numerically calculated for a representative experimental system in a nonviscous solution. The simulated time-resolved fluorescence decays were monoexponential except at very short times (<2 ns). Diffusion coefficients were calculated for different chain models and different chain lengths. The experimental data could be reproduced by assuming systematically smaller end-to-end diffusion coefficients for the shorter chains.  相似文献   

9.
Fluorescence characteristics of hemicyanine dye molecules isolated from neighboring molecules and strongly restricted inside nanosized pores of zeolite (silicalite-1) crystal were investigated. For samples in which the molecules were sufficiently far away from the others, the fluorescence decay lifetime of the molecules was about 2.2?ns. As the intermolecular distance was reduced, the steady-state fluorescence peak shifted toward the longer wavelength and the fluorescence efficiency decreased markedly. The fluorescence decay lifetime also decreased to 0.8?ns for a sample with the smallest intermolecular distance of 2.1?nm. These results were explained in terms of a dipole-dipole interaction between pairs of dye molecules. From the relation between the intermolecular distances and the fluorescence decay lifetimes of the molecules, the radius of energy transfer of hemicyanine donor-acceptor pair in zeolite matrix was determined to be 2.2?nm, in fair agreement with the calculated F?rster radius between dye molecules of the same species.  相似文献   

10.
The shape of infrared stimulated luminescence signals (IRSL) from feldspars has been the subject of numerous studies in the field of luminescence dating. Specifically linearly modulated IRSL signals (LM-IRSL) are commonly assumed to consist of several first order components corresponding to distinct optical stimulation cross sections. This paper models the shape of LM-IRSL signals using a recently proposed kinetic model, which describes localized electronic recombination in donor–acceptor pairs of luminescent materials. Within this model, recombination is assumed to take place via the excited state of the donor, and nearest-neighbor recombinations take place within a random distribution of centers. The model has been used previously successfully to describe both thermally and optically stimulated luminescence (TL, OSL). This paper shows that it is possible to obtain approximate solutions for the distribution of donors in the ground state as a function of two variables, time and the distance between donors and acceptors. Approximate expressions are derived for several possible modes of optical and thermal stimulation, namely TL, OSL, linearly modulated OSL (LM-OSL), LM-IRSL and isothermal TL (ITL). Numerical integration of these expressions over the distance variable yields the distribution of remaining donors at any time t during these experimental situations. Examples are given for the derived distributions of donors in each experimental case, and similarities and differences are pointed out. The paper also demonstrates how LM-IRSL signals in feldspars can be analyzed using the model, and what physical information can be extracted from such experimental data. The equations developed in this paper are tested by fitting successfully a series of experimental LM-IRSL data for Na- and K-feldspar samples available in the literature. Finally, it is shown that the equations derived in this paper are a direct generalization of an equation previously derived for the case of ground state tunneling.  相似文献   

11.
We examined the time-dependent intensity decays ofN-acetyl-l-tryptophanamide (NATA) when collisionally quenched by acrylamide in propylene glycol over a range of temperatures. The intensity decays of NATA became increasingly heterogeneous in the presence of acrylamide. The NATA intensity decays were not consistent with the Collins-Kimball radiation boundary condition (RBC) model for quenching. The steady-state Stern-Volmer plots show significant upward curvature, and quenching of NATA by acrylamide was observed even in vitrified propylene glycol, where translational diffusion cannot occur during the lifetime of the excited state. These frequencydomain and steady-state data indicate a through-space quenching interaction between NATA and acrylamide, and the results are consistent with a rate constant for quenching that depends exponentially on the fluorophore-quencher separation distance. The exponential distance-dependent rate of quenching also explains the upward curvature of the Stern-Volmer plot, and the steady-state data aid in determining the interaction distance between NATA and acrylamide. These results suggest that the distance-dependent quenching rates need to be considered in the interpretation of acrylamide quenching of proteins.  相似文献   

12.
Fluorescence quenching of Nile Blue by amines is thought to be due to electron transfer to the excited dye molecule from the amine electron donor. We used electron transfer quenching of Nile blue byN,N-diethylaniline in propylene glycol as a model system for an interaction which depends exponentially on distance. We investigated the time dependence of the presumed distance-dependent process using gigahertz harmonic-content frequency-domain fluorometry. The frequency-domain data and the steady-state quantum yield were analyzed globally based on either the Smoluchowski-Collins-Kimball radiation boundary condition (RBC) model or the distancedependent quenching (DDQ) model, in which the rate of quenching depends exponentially on the flourophore-quencher distance. We performed a global analysis which included both the frequencydomain time-resolved decays and the steady-state intensities. The latter were found to be particularly sensitive to the model and parameter values. The data cannot be satisfactorily analyzed using the RBC model for quenching. The analysis shows the excellent agreement of the DDQ model with the experimental data, supporting the applicability of the DDQ model to describe the quenching by the electron transfer process, which depends exponentially on the donor-acceptor distance.  相似文献   

13.
以太阳电池级直拉单晶硅片为材料,利用瞬态微波反射光电导衰减仪研究了硅片分别经过单、双面扩散后Fe-B对与少子寿命τ、陷阱浓度及制备成电池的内量子效率(IQE)的相关性.对于单面扩散后的样品,Fe-B对浓度分布在较大程度上决定了少子寿命分布;对于双面扩散后的样品,Fe-B对浓度显著降低(在135×1011 cm-3左右),已不及其他杂质和缺陷对少子寿命的影响.结合瞬态微波衰减信号和陷阱模型,对单、双面吸杂前后硅片的陷阱浓度进行数值计算,发现经过扩散 关键词: 少子寿命 陷阱浓度 内量子效率 Fe-B对  相似文献   

14.
The phenomenon of spatial confinement of the electron-hole recombination in exchange-coupled donor-acceptor pairs was observed by optically detected magnetic resonance in AgBr nanocrystals formed as a result of the self-organized growth in an ionic KBr crystal matrix. The effect is manifested by the maximum distance between recombining donors and acceptors being restricted to the nanocrystal size and by a change in the g value of shallow electron donor centers. Based on an analysis of the exchange interactions, the distribution of distances in the donor-acceptor pairs is determined and the dimensions of nanocrystals are estimated.  相似文献   

15.
The observation of discrete pair line emission and the analysis of the spectra from Ge donor - C acceptor and S donor - Ge acceptor pairs in GaP is reported. The Ge donor binding energy is 0.200 ± 0.002 eV and the Ge acceptor binding energy is 0.258 ± 0.002 eV. The bound exciton recombination at neutral Ge donors was observed at 2.265 eV corresponding to an exciton binding energy of 0.063 eV. This is the most tightly donor bound exciton observed in GaP.  相似文献   

16.
ABSTRACT

The dynamics of the radical pairs generated from the electron transfer reaction from indole derivatives to flavin derivatives are studied by three techniques, time resolved magnetic field effect (TR-MARY) and pulse absorption detected magnetic resonance (ADMR), and absorption detected switching of external magnetic field techniques (AD-SEMF). The three techniques complementarily work for the precise analysis of the radical pair kinetics. The results by all three techniques reflect the difference of the hydrophobic nature of the radicals in the lifetime of RP in a micelle. Overcoming the difficulty of the determination of the short RP lifetime under the nearly quasi steady state due to slow and inhomogeneous decay kinetics of the precursor triplet excited state, AD-SEMF analysis enabled us to determine the kinetic parameters, which is consistent with the qualitatively observed by the other techniques.  相似文献   

17.
We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology.  相似文献   

18.
Fluorescence intensity decays of L-tryptophan in proteins dissolved in pH 7 buffer, in ethanol and in 6 M guanidine pH 7.8 and in lyophilized proteins were measured. In all protein conditions, three lifetimes were obtained along the emission spectrum (310–410 nm). The two shortest lifetimes are in the same range of those obtained for L-Trp in water or in ethanol. Thus, these two lifetimes originate from specific two sub-structures existing in the excited state and are inherent to the tryptophan structure independently of the surrounding environment (amino acids residues, solvent, etc.) In proteins, the third lifetime originates from the interactions that are occurring between tryptophan residues and neighboring amino acids. Populations of these lifetimes are independent of the excitation wavelength and thus originate from pre-defined sub structures existing in the excited state and put into evidence after tryptophan excitation. Fluorescence decay studies of different tripeptides having a tryptophan residue in second position show that the best analysis is obtained with two fluorescence lifetimes. Consequently, this result seems to exclude the possibility that peptide bond induces the third fluorescence lifetimes. Indole dissolved in water and/or in ethanol emits with two fluorescence lifetimes that are completely different from those observed for L-Trp. Absence of the third lifetime in ethanol demonstrates that indole behaves differently when compared to tryptophan. Thus, it seems not adequate to attribute fluorescence lifetime or fluorescence properties of tryptophan to indole ring and to compare tryptophan fluorescence properties in proteins to molecules having close structures such as NATA which fluoresces with one lifetime.  相似文献   

19.
This article describes the design and characterization of a wide-field, time-domain fluorescence lifetime imaging microscopy (FLIM) system developed for picosecond time-resolved biological imaging. The system consists of a nitrogen-pumped dye laser for UV–visible–NIR excitation (337.1–960 nm), an epi-illuminated microscope with UV compatible optics, and a time-gated intensified CCD camera with an adjustable gate width (200 ps-10-3 s) for temporally resolved, single-photon detection of fluorescence decays with 9.6-bit intensity resolution and 1.4-μm spatial resolution. Intensity measurements used for fluorescence decay calculations are reproducible to within 2%, achieved by synchronizing the ICCD gate delay to the excitation laser pulse via a constant fraction optical discriminator and picosecond delay card. A self-consistent FLIM system response model is presented, allowing for fluorescence lifetimes (0.6 ns) significantly smaller than the FLIM system response (1.14 ns) to be determined to 3% of independently determined values. The FLIM system was able to discriminate fluorescence lifetime differences of at least 50 ps. The spectral tunability and large temporal dynamic range of the system are demonstrated by imaging in living human cells: UV-excited endogenous fluorescence from metabolic cofactors (lifetime ∼1.4 ns); and 460-nm excited fluorescence from an exogenous oxygen-quenched ruthenium dye (lifetime ∼400 ns). Received: 23 February 2003 / Published online: 22 May 2003 RID="*" ID="*"Corresponding author. Fax: +1-734/9361-905, E-mail: mycek@umich.edu  相似文献   

20.
ASCUT-1 is a protein found in cuticlin, the insoluble residue of the cuticles of the nematode Ascaris lumbricoides. It contains the CUT-1-like domain which is shared by members of a novel family of components of extracellular matrices. The monomeric form of ASCUT-1 contains a single tryptophan residue. An understanding of the structure-function relationship of the protein under different chemical-physical conditions is of fundamental importance for an understanding of its structure and function in cuticles. In this paper we report the effect of the temperature and sodium dodecyl sulfate on the structural stability of this protein. The structure of the protein was studied in the temperature range 25–85°C in the absence and in the presence of sodium dodecyl sulfate by frequency-domain measurements of the intrinsic fluorescence intensity and anisotropy decays. The time-resolved fluorescence data in the absence of SDS indicated that the tryptophanyl emission decays were well described by a bimodal lifetime distribution, and that the temperature increases resulted in the sharpening and in the shortening of the tryptophanyl lifetime distribution. In the presence of SDS an unimodal fluorescence lifetime distribution as well as a marked decrease in the anisotropy decay values were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号