首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以电纺尼龙6纳米纤维膜为基底,原位氧化聚合制得聚吡咯/尼龙6纳米纤维膜(PPy/Nylon 6-NFsM).通过静态和动态吸附实验考察PPy/Nylon 6-NFsM对Pb2+的吸附行为,探究其作为固相萃取介质富集水中痕量Pb2+的可行性.结果表明:298 K,pH=10时,PPy/Nylon 6-NFsM对Pb2+的静态饱和吸附量达542 mg/g;吸附动力学和吸附等温线分别符合准二级动力学模型和Freundlich模型;优化了PPy/Nylon 6-NF-sM的固相萃取条件,采用火焰原子吸收光谱法检测实际水样中的Pb2+,检出限为1.2 μg/L(信噪比为3计),10 μg/L加标水平加标回收率为95.3% ~ 100.4%,相对标准偏差(RSD)为1.6%(n=3),可实现实际水样中痕量Pb2+的准确、灵敏的检测.  相似文献   

2.
生物质竹炭对水中Cd~(2+)的吸附行为研究   总被引:1,自引:0,他引:1  
以竹炭和经化学改性竹炭作为吸附剂,研究其对水溶液中Cd2+的吸附特性,探讨了竹炭对Cd2+的吸附热力学和吸附动力学性质,通过单因子优化实验探讨了温度、竹炭投加量和p H值对吸附效果的影响。结果表明:竹炭及改性竹炭对Cd2+的吸附动力学过程符合准二级动力学模型,在18h可达到平衡;其等温吸附曲线符合Langmuir方程,最大吸附量分别为10.18mg/g和16.71mg/g;两者对Cd2+的吸附受温度的影响较小;竹炭及改性竹炭的最佳投加量分别为0.8g、0.6g;p H对竹炭及改性竹炭吸附Cd2+的影响较大,在p H 2~6范围时,竹炭及改性竹炭对Cd2+的吸附量随p H的增加而增加。  相似文献   

3.
提出了纳米硅羟基磷灰石(Si-HAP)分离富集,火焰原子吸收光谱法(FAAS)测定水样中痕量铅的新方法。考察了铅在纳米Si-HAP上的吸附动力学、最佳酸度和吸附容量。实验结果表明:在最佳实验条件下,纳米Si-HAP能定量、快速地吸附水中的痕量Pb2+,其静态吸附容量24.33 mg/g;吸附在纳米Si-HAP上的Pb2+可用0.01mol/L EDTA-Ca完全洗脱。本法对Pb2+的检出限为1.33 ng/mL,相对标准偏差为4.0%(n=11,c=1μg/mL),加标回收率在94.9%~102.0%之间。方法用于实际水样中铅的测定,结果满意。  相似文献   

4.
将5-氨基水杨酸接枝到PGMA/SiO2微粒的聚甲基丙烯酸缩水甘油酯(PGMA)大分子链上,成功制备了一种新型螯合吸附材料ASA-PGMA/SiO2。采用静态法研究了ASA-PGMA/SiO2对重金属离子Cu2+、Cd2+、Zn2+、Pb2+的吸附性能,结果表明其对Cu2+、Cd2+、Zn2+、Pb2+具有很强的螯合吸附能力,吸附容量分别可以达到0.42、0.40、0.35、0.31mmol/g。体系的pH对吸附容量影响较大,吸附行为服从Langmuir和Freundlich吸附模型。使用0.1mol/L的盐酸溶液就可实现重金属离子的解吸。通过反复吸附-解吸实验证明ASA-PGMA/SiO2具有良好的重复使用性能。  相似文献   

5.
通过原子吸收光谱法研究了在不同pH、吸附剂量、Pb2+浓度和吸附时间条件下磷酸酯化改性梨渣吸附Pb2+的行为。结果表明:溶液初始pH 4.2时,Pb2+的吸附达到最大值;酯化梨渣≥10 g/L能除去Pb2+为30 mg/L溶液中的91%的Pb2+。酯化梨渣对Pb2+的吸附符合Langmuir等温模型,其最大吸附能力为43.99 mg/g。Pb2+达到吸附平衡的时间为40 min,准一级反应动力学方程可描述酯化梨渣对Pb2+的吸附过程。  相似文献   

6.
活性炭材料对镍基催化剂乙醇气相羰化性能的影响   总被引:1,自引:0,他引:1  
采用浸渍法制备了负载在竹炭(BC)、柱状煤质炭(CYC)、果壳炭(FC)、木质炭(WC)和椰壳炭(CC)上的5种Ni基催化剂,考察了镍分散度、还原性能及催化乙醇气相羰化制丙酸的性能.用N2物理吸附法、X射线光电子能谱和程序升温脱附等方法研究了活性炭的孔结构特性、表面含氧官能团种类和数量.结果表明,Ni/CC的羰化活性最高,乙醇转化率和丙酸选择性分别为96.1%和93.2%,而Ni/BC的羰化活性最低,乙醇转化率和丙酸选择性分别为63.0%和32.7%.催化剂催化羰化性能与其载体活性炭材料的性质密切相关.  相似文献   

7.
用乙二醇为溶剂,三氯化铁和尿素为起始反应试剂,柠檬酸为粒子表面修饰剂,通过一步溶剂热法制备Fe3 O4纳米粒子,然后以一定浓度配比的Na2 SO4与NaOH混合液为沉淀剂,通过沉淀聚合法制备Fe3 O4/壳聚糖复合纳米粒子吸附剂。利用X射线衍射仪(XRD)、红外光谱(IR)、透射电子显微镜(TEM)和物理特性测试仪(PPMS)表征样品的结构、形貌和磁性能,并使用原子吸收分光光度计(AAS)评价吸附剂对Pb2+的吸附去除性能。结果表明,Fe3O4/壳聚糖复合纳米粒子吸附剂是由磁性Fe3O4纳米球形粒子和鱼卵状壳聚糖纳米粒子聚集体复合而成,该吸附剂对Pb2+有很好的吸附去除性能,它对Pb2+的等温吸附线符合Langmuir模型,在温度298k和pH值5时,吸附剂对Pb2+的饱和吸附量为105.5mg/g。  相似文献   

8.
基于2-巯基乙醇-硫代硫酸钠-纳米金/Pb2+(2-ME-Na2S2O3-AuNPs/Pb2+)体系的纳米金浸出反应,开发了一种低成本、可通过肉眼灵敏检测Pb2+的纳米复合薄膜。优选出聚酰胺-6(PA-6)层析薄膜,通过吸附牛血清白蛋白(BSA)修饰的纳米金(AuNPs),制备得到一种色泽均匀的BSA-AuNPs/PA-6纳米复合薄膜。考察了PA-6薄膜吸附BSA-AuNPs的时间,2-ME-Na2S2O3-AuNPs/Pb2+反应体系中2-ME和Na2S2O3的浓度,以及反应温度和反应时间对Pb2+检测的影响。结果表明,在优化条件下,吸附30 min后,0.05 mol/L的Na2S2O3及0.25 mol/L的2-ME在80℃下反应20 min,即可通过肉眼实现对Pb2+的检测,灵敏度可达2.0×10-8mol/L;同时,该方法具有高选择性。将BSA-AuNPs/PA-6纳米复合薄膜应用于自来水中Pb2+的检测,通过肉眼判断,检出限可达到5.0×10-8mol/L。  相似文献   

9.
首次采用催化气相沉积法(CVD),以异丙醇为溶剂将催化剂[Ni(NO3)2·6H2O]有效地分散在PAN-ACF较大的微孔上,使其成为积炭的活性位,从而将ACF的孔径调控在分子筛孔径效应范围内.以液氮为吸附质,测定了样品吸附等温线,采用H-K及DFT法计算孔结构,用XRD及SEM表征ACF的显微织构,并对该沉积过程进行了解释.  相似文献   

10.
以乙烯基修饰的磁性碳纳米管为基质,Pb2+为模板,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,制备出一种对Pb2+具有特异吸附能力的新型磁性印迹聚合物(MWNTs/MIIPs)。采用扫描电镜、红外光谱和振动样品磁强计等技术并对该印迹聚合物的形态、化学结构和性能进行表征。吸附实验结果表明,所制备的MWNTs/MIIPs对Pb2+具有良好的吸附和选择识别能力,最大吸附量为25.9 mg/g;选择吸附实验结果表明,Pb2+/Cu2+,Pb2+/Zn2+,Pb2+/Co2+,Pb2+/Mg2+,Pb2+/Cd2+以及Pb2+/Ni2+的选择因子分别是2.3,2.5,2.1,2.2,2.1和2.4。结合原子吸收光谱分析技术,此MWNTs/MIIPs成功应用于实际样品中微量Pb2+的分离富集,富集倍数可达40.5倍。  相似文献   

11.
The preparation of the catalyst is one of the key parameters which governs the quality of carbon nanotubes (CNTs) grown by catalyzed chemical vapor deposition (CVD). We investigated the influence of three different procedures of catalyst preparation on the type and diameter of CNTs formed under identical growth conditions via methane CVD. In the first one, chemically synthesized colloidal iron oxide or iron molybdenum alloy nanoparticles were used, which were homogeneously deposited on silicon substrates by spin coating to prevent them from coalescence under CVD growth conditions. The obtained multiwall CNTs (MWNTs) exhibited diameters corresponding to the catalyst particle size, whereas no formation of single-wall CNTs (SWNTs) was observed. In the second method, commercial porous alumina nanoparticles were used in association with iron and molybdenum salts and the Fe/Mo catalyst was formed in situ. We determined that the alumina concentration significantly influenced the morphology of the catalyst and that below a critical value of the range of 1 g/L no CNTs were formed. While yielding nearly defect-free SWNTs, their diameter could not be controlled using this procedure, resulting in a large distribution of tube sizes. In a third, new preparation method, associating alumina and iron-based nanoparticles, SWNTs of a different size and narrower diameter distribution as compared to the second method were obtained. Our results are evidence of the essential role of alumina particles in the formation of SWNTs, and the newly developed method opens up a way to the synthesis of diameter-controlled SWNTs via catalyzed CVD.  相似文献   

12.
以竹炭为载体,采用溶剂热法制备了氧空位(OV)型BiOI/BiOCl光催化剂,考察了温度和光照强度对其催化脱硝性能的影响,采用SEM、XPS、XRD、PL、Uv-vis等表征方法研究了该复合光催化剂上的脱硝机理。结果表明,在氙灯功率500 W、温度30℃时,最佳脱硝效率可达73%。氧空位改性可以增大竹炭的比表面积和孔容,提高其吸附能力,同时使C=O双键和-COO形式的酸性官能团分解为C-O官能团;OV改性还增加了光催化活性位点,减少了电子空穴对复合概率,从而提高了对NO的光催化降解效率。  相似文献   

13.
为比较不同炭吸附材料木炭、竹炭、改性木炭和改性竹炭对溶液中铅(Ⅱ)的吸附性能,研究了pH值、吸附剂用量、吸附平衡时间等因素对吸附量的影响。动力学研究表明,它们对铅(Ⅱ)的吸附均可用准一级动力学方程描述,测定了不同炭对铅(Ⅱ)吸附的表观速率常数,Freundlich等温吸附模型能较好地描述吸附过程;以我国饮用水标准中铅的限值0.05mg/L为标准,研究了一定质量浓度及一定量含铅废水处理时,所需吸附剂投料量的估算方法和实验验证结果,结果表明,控制合适的吸附条件,竹炭能较完全有效地除去废水中的铅。  相似文献   

14.
An investigation concerning the tautness of suspended carbon nanotubes (CNTs) grown using the chemical vapor deposition (CVD) method is presented. The suspended nanotubes were analyzed with both a transmission electron microscope (TEM) and a high-resolution scanning electron microscope (HR-SEM). The HR-SEM and TEM investigations revealed that the interaction between CNTs among themselves as well as with the surface on which they are grown is a primary cause for the tautness of suspended tubes. Specifically, the tube-tube and tube-surface dynamics cause adjoining tubes to create a "zipper-effect", thereby straightening and tightening them. Suspended CNTs cling to each other and to as much of the surface as possible and thus minimize their total energy, creating taut, suspended structures. This effect can be so strong so as to force wide tubes to buckle, with no other external force involved. The implications of this study include all forms of alignment processes of nanotubes using the CVD method. The results presented here provide the groundwork for the capability of fine-tuning the control of CNT network formation using substrate mechanical features.  相似文献   

15.
Synthesis of MWCNTs by chemical vapor deposition (CVD) of acetylene is investigated at different temperatures. Fe-Co/CaCO3 catalyst/support prepared by wet impregnation method is used. CaCO3 was found to be a good support as a high selective material for deposition of CNTs with high purity. The effect of temperature on catalyst/support phases and crystal size was identified by using XRD. The crystallite size was decreased with increase temperature. The effect of growing time and temperature on carbon yield was studied and the deposited MWCNTs increased with temperature. The structure and purity of synthesized CNTs at different temperatures was examined by TEM and the effect of temperature on the surface area of the synthesized MWCNTs was investigated, the surface area decreased as the temperature increased. The prepared CNTs were purified using chemical oxidation method and the effect of acid treatment on CNTs surface was examined by TEM and SEM. The function groups produced at CNTs surface were investigated by using FTIR spectroscopy also the effect of CNTs preparation temperature on FTIR spectra was studied. The functionalized CNTs were used for adsorption of some heavy metals and for removal of some organic dyes from water.  相似文献   

16.
Bamboo charcoal coated with silver (BC/Ag) was prepared by activation and chemical reduction processes at different AgNO3 contents (10‐30 wt.%). The spectroscopic characterizations of the formation processes of BC/Ag composites were studied using X‐ray diffraction, scanning electron microscopy and transmission electron microscopy. These composites were introduced in epoxy resin to be a microwave absorber and mixed polyethylene to be an infrared stealth plate. Microwave absorbing properties were investigated by measuring complex permittivity, complex permeability and reflection loss in the 2‐18 and 18‐40 GHz microwave frequency range using the free space method. The thermal extinction measurements in the 3‐5 and 8‐12 μm were done to evaluate the shielding affectivity of infrared. The results showed that a significant thermal extinction and a wider absorption frequency range could be obtained by adding silver to bamboo charcoal.  相似文献   

17.
竹炭模板合成高度有序二氧化硅微米线组   总被引:6,自引:0,他引:6  
通过扫描电子显微镜(SEM)系统地研究了竹炭的微观结构,并以竹炭孔道为模板,以正硅酸乙酯为硅源,采用溶胶-凝胶法合成出高度有序的二氧化硅微米线组,其形貌和组成分别通过SEM,EDX和XRD进行表征.结果表明,所得微米线为较纯的方石英晶型,直径约1~2μm,长达200μm以上,呈束状高度有序排列,其形貌高度复制了竹炭微孔孔道的结构,说明微孔在限域反应中起模板作用.  相似文献   

18.
<正>Bamboo charcoal polyester fiber(BC-PET) has been widely applied in home textiles,functional clothing and hydra-balance material,due to their strong adsorptivity,good resolvability,anti-statics,deodorization,antibacterial,anion releasing and far infrared emitting.But BC-PET is black and difficult to be dyed,and its application is limited.In this article,nitric acid was used to treat the surface of bamboo charcoal(BC) powder,and BC powder was modified by titanium dioxide sol to prepare white bamboo charcoal(white-BC) particle.White bamboo charcoal polyester fiber(white-BC-PET) was obtained by mixing white-BC and polyester(PET) resin in double screw extruder.Performance of fiber was tested referring to national standard GB/T14464-2008 of common PET fiber and most of its indicators have already exceeded GB the level of excellent product.SEM photographs showed that the white-BC was uniformly distributed inside or on the surface of fiber.The white-BC-PET could absorb some aniline and had at least 90%anti-bacterial rate.The anti-bacterial rate could have almost been kept after it was washed 50 times.It was hopeful to be applied in various fields as functional fiber.  相似文献   

19.
竹炭对砷(Ⅲ)离子的吸附行为研究   总被引:1,自引:0,他引:1  
研究了溶液的pH值与初始质量浓度、竹炭用量、吸附时间以及温度等因素对As(Ⅲ)离子吸附效果的影响。研究结果表明,在pH为3.00和12.50的情况下,竹炭对As(Ⅲ)离子有较好的吸附效果;同时吸附率随初始质量浓度的增加而降低,吸附能在180min内达到吸附平衡;等温吸附服从Freundlieh吸附等温方程式,酸性条件和碱性条件的最佳吸附温度分别为30℃和40℃。认为竹炭可作为理想的除砷吸附材料。  相似文献   

20.
The coupling of solid-phase extraction (SPE) using bamboo charcoal (BC) as an adsorbent with a monolithic column-high performance liquid chromatography (MC-HPLC) method was developed for the high-efficiency enrichment and rapid determination of 16 polycyclic aromatic hydrocarbons (PAHs) in water. Key influence factors, such as the type and the volume of the elution solvent, and the flow rate and the volume of the sample loading, were optimized to obtain a high SPE recovery and extraction efficiency. BC as an SPE adsorbent presented a high extraction efficiency due to its large specific surface area and high adsorption capacity; MC as an HPLC column accelerated the separation within 8 min because of its high porosity, fast mass transfer, and low-pressure resistance. The calibration curves for the PAHs extracted were linear in the range of 0.2-15 μg/L, with the correlation coefficients (r(2)) between 0.9970-0.9999. This method attained good precisions (relative standard deviation, RSD) from 3.5 to 10.9% for the standard PAHs I aqueous solutions at 5 μg/L; the method recoveries ranged in 52.6-121.6% for real spiked river water samples with 0.4 and 4 μg/L. The limits of detection (LODs, S/N = 3) of the method were determined from 11 and 87 ng/L. The developed method was demonstrated to be applicable for the rapid and sensitive determination of 16 PAHs in real environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号