首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Physics letters. A》2020,384(28):126741
The potential of C3N nanoribbons used as anode material for lithium-ion batteries has been systematically investigated through first-principles calculations. The results suggest that C3N nanoribbons have excellent mechanical properties (stiffness ranging from 286.28 to 412.69 N m−1) and good electronic conductivity (with a bandgap of 0-0.31 eV). Further studies reveal that the H-passivated C3N nanoribbons have high Li insertion capacity (708.60 mA h g−1) and significantly enhanced Li binding strength (0.21-2.11 eV) without the sacrifice of Li mobility. The high stiffness, superior cycle performance, good electronic conductivity, and excellent Li migration capability indicate the great potential of C3N nanoribbons to be an anode material. The calculated results provide the valuable insights for the development of high-performance C3N nanoribbons electrode materials in lithium-ion batteries.  相似文献   

3.
TiO2-coated magnetite clusters (nFe3O4@TiO2) were facilely prepared through the sol–gel reaction between Ti alkoxides (TEOT) and magnetite clusters (nFe3O4) with terminated alkoxy groups. The composite particles represented a core–shell nanostructure (nFe3O4@TiO2) consisting of a Fe3O4 cluster core and a TiO2 capsule layer. The capsule layer of nFe3O4@TiO2 was increased with increasing amounts of TEOT (150, 300, 500 μl) in sol–gel reaction. The Fe3O4@TiO2 (150 μl of TEOT) with a thin TiO2 layer (ca. 10 nm) exhibited two kinds of cathodic (0.79 V and 1.61 V) and anodic (1.78 and 2.1 V) peaks attributed to the reduction and oxidation process by Fe3O4 core and TiO2 layer, respectively. The thin nFe3O4@TiO2 (150 μl of TEOT) exhibited the enhanced capacity retention by ca. 40% probably due to the buffering effect of TiO2 capsule layer. However, the thick nFe3O4@TiO2 (300–500 μl of TEOT) exhibited a rapid capacity fading due to the disintegrated core–shell nanostructure, i.e., unfavorable hetero-junction between TiO2 matrix and magnetite clusters.  相似文献   

4.
Some oxides have been investigated as alternative materials for Li-ion batteries. In particular, the In2O3 anodic compound, synthesized in our laboratory, and some commercial powders (PbO, PbO2 and Fe2O3) were studied. The morphology of the oxides was analyzed by SEM investigation. The electrochemical characteristics obtained on composite thin-film electrodes based on these materials are here reported, in term of specific capacity and cyclability. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

5.
《Current Applied Physics》2019,19(6):715-720
Hierarchical nanostructured NiO (h-NiO) microtubes were prepared by a simple wet-chemical synthesis without the use of template or surfactant, followed by the calcination of α-Ni(OH)2 precursor. The structural characterization of the h-NiO microtubes were performed by scanning microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), the results of which indicated that the obtained h-NiO microtubes are covered by the nanosheet grown perpendicularly on the tube surface. The unique hierarchical nanostructure of h-NiO microtubes with high surface area and many voids facilitates the electrochemical reaction as well as the short ion and electron transport pathway. Therefore, as anode electrode of Li-ion batteries, the h-NiO microtubes deliver largely enhanced cycle capacity of 770 mAh·g−1 at a current density of 0.5 C after 200 cycles with high columbic efficiency, compared to the NiO rods. These results suggest that the h-NiO microtubes can be a promising anode material for Li-ion batteries.  相似文献   

6.
When developing high performance lithium-ion batteries,high capacity is one of the key indicators.In the last decade,the progress of two-dimensional(2 D) materials has provided new opportunities for boosting the storage capacity.Here,based on first-principles calculation method,we predict that MnN monolayer,a recently proposed 2 D nodal-loop halfmetal containing the metallic element Mn,can be used as a super high-capacity lithium-ion batteries anode.Its theoretical capacity is above 1554 mA-h/g,more than four times that of graphite.Meanwhile,it also satisfies other requirements for a good anode material.Specifically,we demonstrate that MnN is mechanically,dynamically,and thermodynamically stable.The configurations before and after lithium adsorption exhibit good electrical conductivity.The study of Li diffusion on its surface reveals a very low diffusion barrier(~ 0.12 eV),indicating excellent rate performance.The calculated average open-circuit voltage of the corresponding half-cell at full charge is also very low(~0.22 V),which facilitates higher operating voltage.In addition,the lattice changes of the material during lithium intercalation are very small(~ 1.2%-~4.8%),which implies good cycling performance.These results suggest that 2 D MnN can be a very promising anode material for lithium-ion batteries.  相似文献   

7.
Silicon/polyaniline-based porous carbon (Si/PANI-AC) composites have been prepared by a three-step method: coating polyaniline on Si particles using in situ polymerization, carbonizing, and further activating by steam. The morphology and structure of Si/PANI-AC composites have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectra, respectively. The content and pore structure of the carbon coating layer in Si/PANI-AC have been measured by thermogravimetric analysis and N2 adsorption-desorption isotherm, respectively. The results indicate some micropores about 1~2 nm in the carbon layer appear during activation and that crystal structure and morphology of Si particles can be retained during preparation. Si/PANI-AC composites exhibit high discharge capacity about 1000 mAh g?1 at 1.5 A g?1; moreover, when the current density returns to 0.2 A g?1, the discharge capacity is still 1692 mAh g?1 and remains 1453 mAh g?1 after 70 cycles. The results indicate that the porous carbon coating layer in composites plays an important role in the improvement of the electrochemical performance of pure Si.  相似文献   

8.
CoN films with nanoflake morphology are prepared by RF magnetron sputtering on Cu and oxidized Si substrates and characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) techniques. The thickness and composition of the films are determined by the Rutherford back scattering (RBS) technique confirming the stoichiometric composition of CoN with a thickness, 200 (± 10) nm. Li-storage and cycling behavior of nanoflake CoN have been evaluated by galvanostatic discharge–charge cycling and cyclic voltammetry (CV) in cells with Li–metal as counter electrode in the range of 0.005–3.0 V at ambient temperature. Results show that a first-cycle reversible capacity of 760 (± 10) mAhg? 1 at a current rate 250 mAg? 1(0.33 C) increases consistently to yield a capacity of 990 (± 10) mAhg? 1 after 80 cycles. The latter value corresponds to 2.7 mol of cyclable Li/mol of CoN vs. the theoretical, 3.0 mol of Li. Very good rate capability is shown when cycled at 0.59 C (up to 80 cycles) and at 6.6 C (up to 50 cycles). The coloumbic efficiency is found to be 96–98% in the range of 10–80 cycles. The average charge and discharge potentials are 0.7 and 0.2 V, respectively for the decomposition/formation of Li3N as determined by CV. However, cycling to an upper cut-off voltage of 3.0 V is essential for the completion of the “conversion reaction”. Based on the ex-situ-XRD, -HR-TEM and -SAED data, the plausible Li-cycling mechanism is discussed. The results show that nanoflake CoN film is a prospective anode material for Li-ion batteries.  相似文献   

9.
《Current Applied Physics》2019,19(6):768-774
In this work, novel hollow urchin-like MnO2 microspheres (u-MnO2), consisting of a hollow core with nanotubes, are synthesized by a simple hydrothermal process. The morphology of the MnO2 structures could be tuned from round particles to a hierarchical hollow urchin structure by controlling the hydrothermal reaction time, with no need for surfactant or templates. The nanostructures of the obtained u-MnO2 are characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The X-ray diffraction (XRD) pattern of the u-MnO2 reveals a tetragonal structure of α-MnO2. The carbon nanofibers (CNFs) are uniformly deposited on u-MnO2 to improve the electrical conductivity and to utilize the hierarchical architecture of u-MnO2. As the anode electrode of Li-ion batteries, the u-MnO2/CNFs nanocomposites exhibit discharge capacity of 988 mAh·g−1 after 100 cycles with a good rate capability. The superior electrochemical performances of the u-MnO2/CNFs nanocomposites can be attributed to the hierarchical urchin-like structures and the superior electrical conductivity of the nanocomposites, which can facilitate fast electron and ion transport and accommodate a large volume change during charge/discharge.  相似文献   

10.
First principles calculations are performed to study the electronic properties and Li storage capability of honeycomb carbon. We find its right model consistent with the experimental result, the honeycomb carbon and its Li-intercalated configurations are all metallic which is beneficial to the electrode materials for lithium-ion batteries. The model 1 configuration shows fast Li diffusion and theoretical Li storage capacity of 319 mAh/g. Moreover, the average intercalation potentials for honeycomb carbon material is calculated to be low relatively. Our results suggest that the honeycomb carbon would be a new promising pure carbon anode material for Li-ion batteries.  相似文献   

11.
《Solid State Ionics》2006,177(15-16):1331-1334
Hard carbon/Li2.6Co0.4N composite anode electrode is prepared to reduce the initial high irreversible capacity of hard carbon, which hinders potential application of hard carbon in lithium ion batteries, by introducing Li2.6Co0.4N into hard carbon. Lithiated Li2.6Co0.4N provides the compensation of lithium in the first cycle, leading to a high initial coulombic efficiency of ca. 100% versus lithium. As-prepared hard carbon/Li2.6Co0.4N composite electrode presents initial capacity of 438 mA h g 1. A full cell using LiCoO2 cathode and the composite anode shows much higher initial coulombic efficiency and capacity than those of a cell using LiCoO2 and hard carbon anode. This paves the way to reduce the large initial irreversible capacity of hard carbon.  相似文献   

12.
《Current Applied Physics》2020,20(2):310-319
The electrochemical properties of V2C and V2CT2 (T = O, S) MXenes with and without vacancy as anode materials for Na-ion and Li-ion batteries, have been studied using first-principles calculation. The present results indicate that the adsorption strength of Li-ion and Na-ion on V2CS2 are less than that of O-functionalized, together with a lower diffusion barrier. Simultaneously, V2CS2 monolayer exhibits lower open-circuit voltage (OCV) values of 0.72 and 0.49 V for Li- and Na-ion, respectively. Interestingly, the presence of atomic vanadium vacancy on V2CS2 monolayer exerts more prominent effects on enhancing adsorption strength than that of carbon vacancy for Li-ion and Na-ion, but with an exception for the diffusion of Li-ion and Na-ion on V2CS2 monolayer. The finding suggests that the V2CS2 monolayer is expected to be a potential candidate as anode material for Li-ion and Na-ion battery due to its lower open-circuit voltages and diffusion barriers.  相似文献   

13.
A CoSb3/nano-carbon-web composite was synthesized by an in situ method using polypropylene as both the reductive agent and carbon source. Hydrogen and carbon from the pyrolysis of polypropylene provide a strong reductive atmosphere and ensure the reduction of Co2+ (and Sb3+) to form CoSb3, and the residual carbon would in situ wrap around the freshly crystallized CoSb3. Electrochemical measurements show that CoSb3/nano-carbon-web as Li-ion battery anode reaches an initial charge capacity of 770 mA hg?1 and remains above 430 mA hg?1 after 20 cycles. The in situ synthesis route has the potential as a general method for the preparation of other metal (or alloy)/nano-carbon-web composites.  相似文献   

14.
Qijiu Deng  Yuan Wang  Yu Zhao  Jingze Li 《Ionics》2017,23(10):2613-2619
Organic small molecule materials have attracted extensive attention due to their environmentally friendly, sustainability, and low cost which can be obtained from biomass and recyclable resources for Li/Na-ion batteries. However, the intrinsic poor electronic conductivities and the dissolution in organic liquid electrolyte lead to poor electrochemical performance, thus preventing them from practical application. To tackle these issues, herein, we take disodium terephthalate (Na2TP) as an example and report an organic/multiwall-carbon nanotube nanocomposite via a simple spray drying methodology as an anode material for Li-ion battery. It delivers improved electrochemical performance compared to the pristine Na2TP microspheres produced by the same spray drying method and the bulk microsized Na2TP prepared by a conventional water-crystallization method. This is mainly due to the as-prepared nanocomposite can shorten the Li-ion diffusion distance, form highly conductive network and slow the dissolution rate. Our simple methodology could be of interest designing newly organic composites.  相似文献   

15.
Composites of three-dimensional (3D) carbon nanostructures coated with olivine-structured lithium iron phosphates (LiFePO4) as cathode materials for lithium ion batteries have been prepared through a Pechini-assisted reversed polyol process for the first time. The coating has been successfully performed on nonfunctionalized commercially available 3D carbon used as catalysts. Thermal analysis revealed no phase transitions till crystallization occurred at 579 °C. Morphological investigation of the prepared composites showed a very good quality of the coating on the 3D carbon structures. A great enhancement of the crystallinity of the olivine structure and of the composites was revealed by the structural investigation performed on pure LiFePO4 and composites after annealing at 600 °C for 10 h under nitrogen atmosphere. The cyclic voltammetry curves of the composites show well-defined peaks and smaller value of the polarization overpotential indicating an enhancement of electrode reaction reversibility compared to the LiFePO4 phase.  相似文献   

16.
Sn/SnSb, Sn/Bi, and Sn/SnSb/Bi multi-phase materials were synthesised via reduction of cationic precursors with NaBH4 and with Zn, and were tested for their suitability as anode materials for Li-ion batteries by galvanostatic cycling. The rapid reduction with NaBH4 yielded the finer materials with the better cycling stabilities, whereas the reduction with Zn yielded the purer materials with the lower irreversible capacities in the first cycle. Reversible capacities of ∼ 600 mAh g−1, ∼ 350 – 400 mAh g−1, and ∼ 500 mAh g−1 were obtained for Sn/SnSb, Sn/Bi, and Sn/SnSb/Bi, respectively. The cycling stability of the materials decreased in the order Sn/SnSb>Sn/SnSb/Bi>Sn/Bi, which is in part attributed to the presence / absence of intermetallic phases which undergo phase-separation during lithiation. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

17.
A simple method was proposed to prepare nanosized Si composite anode materials for lithium-ion (Li-ion) batteries. The preparation started with the shock-type ball milling of silicon in liquid media of polyacrylonitrile (PAN)/dimethylformamide (DMF) solution, forming slurry where the nano-Si particles were uniformly dispersed, followed by the drying of the slurry to remove DMF. The nanosized Si composite anode material was obtained after the pyrolysis of the mixture at 300 °C where the pyrolyzed PAN provided a conductive matrix to relieve the morphological change of Si during cycling. As-prepared composite presented good cyclability for lithium storage. The proposed process paves an effective way to prepare high performance Si, Sn, Sb and their alloys based composite anode materials for Li-ion batteries.  相似文献   

18.
《Solid State Ionics》2006,177(35-36):3023-3029
Nanomaterials are becoming important for use in Li-ion battery electrodes as these can deliver increased capacity and improved power performance. Our work is focused on Mg-doped high-voltage spinel materials, such as LiNi0.5Mn1.5O4, in order to improve its stability. LiMgδNi0.5−δMn1.5O4 with δ = 0.05, having the cubic spinel structure (P4332) were made via four different synthesis routes – a solid-state route, a sol–gel method, a xerogel route and an auto ignition method.The powders were investigated with SEM and TEM analysis. XRD was used to determine the crystallographic structure. Electrochemical tests were performed in CR2320 coin cells built with 1 M LiPF6 in EC/EMC/DMC 1:2:2 as electrolyte and metallic Li as negative electrode – cells were measured with a MACCOR cycler.LiMg0.05Ni0.45Mn1.5O4 made via the sol–gel and xerogel routes revealed agglomerated nanoparticles with sizes ranging from 10 to 200 nm, whereas the auto ignition method gives particle sizes between 10 and 50 nm. Although agglomerated, often residual LiMn2O4 is observed, with increasing concentration going from solid-state, sol–gel, xerogel to auto ignition.Hence, thanks to these different synthesis routes, we are able to obtain particle sizes reaching from 10 to 200 nm, with a narrow particle size distribution. The electrochemical tests of the xerogel particles showed promising results. The auto ignition method show also promising results, however, the impurity phase needs to be suppressed significantly. The sol–gel method, the xerogel route and the auto ignition method show increased capacity retention at high power rates compared to the solid state method.  相似文献   

19.
Yingqiong Yong  Li-Zhen Fan 《Ionics》2013,19(11):1545-1549
Silicon/carbon nanocomposites are prepared by dispersing nano-sized silicon in mesophase pitch and a subsequent pyrolysis process. In the nanocomposites, silicon nanoparticles are homogeneously distributed in the carbon networks derived from the mesophase pitch. The silicon/carbon nanocomposite delivers a high reversible capacity of 841 mAh g?1 at the current density of 100 mA g?1 at the first cycle, high capacity retention of 98 % over 30 cycles, and good rate performance. The superior electrochemical performance of nanocomposite is attributed to the carbon networks with turbostratic structure, which enhance the conductivity and alleviate the volume change of silicon.  相似文献   

20.
Qun Wu  Yanhui Xu  Hua Ju 《Ionics》2013,19(3):471-475
In the present work, a new-type low-cost lithium ion battery cathode material, the Mikasaite-type iron sulfate, has been studied. It can be prepared by heating the water-containing iron sulfate raw chemicals in air atmosphere. The experimental results have shown that the oxidation and the reduction peaks are 3.92 and 3.37 V in the cyclic voltammogram, respectively, when the scanning rate is 0.05 mV s?1. The galvanostatic measurements have explored that the voltage plateau during charging is slightly less than 3.70 V and the discharge voltage plateau is 3.40 V for the first cycle and 3.50 V for the following cycles at 0.1 C rate. The discharge capacity in the first cycle can reach 116 mAh g?1, about 87 % of the theoretical capacity (134 mAh g?1). It is believed that the product in the fully discharged state is Li2Fe2(SO4)3. However, the insertion reaction is reversible only for the second lithium ion. During cycling, the reversible capacity remains about 60 mAh g?1. Further capacity fade is not found in the 20 discharge–charge cycles. The electrochemical impedance measurements have shown that there are two compressed semicircles in the Nyquist plots and a Warburg impedance in the low-frequency domain. The high-frequency semicircle is related with the electrode’s structural factor and the intermediate-frequency semicircle corresponds to the charge-transfer process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号