首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the substitution of manganese by boron on the crystal structure and magnetic properties of Ni2Mn1−xBxGa Heusler alloys with 0?x?0.5 has been investigated using X-ray diffraction, thermal expansion, resistivity, and magnetization measurements. The samples with concentrations x<0.25 were found to be of single phase and belonged to the cubic L21 crystal structure at room temperature. Crystal cell parameters of the alloys decreased from 5.830 to 5.825 Å with increasing boron concentration (x) from 0 to 0.25. The alloys were ferromagnetically ordered at 5 K and the saturation magnetization decreased with increasing boron concentration. The ferromagnetic ordering and structural transition temperatures for 0?x?0.3 have been observed and the phase (xT) diagram of the Ni2Mn1−xBxGa system was constructed. The phase (xT) diagram indicates that the ground state of Ni2Mn1−xBxGa alloys belongs to ferromagnetic martensitic, premartensitic, and austenitic phases in x?0.12, 0.12<x?0.18, and 0.18<x?0.3, respectively. The relative influence of cell parameters and electron concentrations on the phase diagram is discussed.  相似文献   

2.
New mixed Heusler alloys of the system Cu2(Mn1?xNix)Sn were prepared with x = 0–1. Magnetic measurements in the ferromagnetic region were undertaken. For manganese, the only atom displaying a magnetic moment in this row of Heusler alloys, 4μB was found, deviations were due to the degree of order. Measurements in the paramagnetic region were not possible because of phase transitions on heating leading to polyphase samples. The critical concentration of magnetic ions was estimated to 13 at.% and compared with models given by Duff and Cannella [6]. With the same plot the Curie point for Cu2MnSn could be determined (630 K).  相似文献   

3.
The studies of magnetocaloric properties, phase transitions, and phenomena related to magnetic heterogeneity in the vicinity of the martensitic transition (MT) in Ni–Mn–In and Ni–Mn–Ga off-stoichiometric Heusler alloys are summarized. The crystal structure, magnetocaloric effect (MCE), and magnetotransport properties were studied for the following alloys: Ni50Mn50−xInx, Ni50−xCoxMn35In15, Ni50Mn35−xCoxIn15, Ni50Mn35In14Z (Z=Al, Ge), Ni50Mn35In15−xSix, Ni50−xCoxMn25+yGa25−y, and Ni50–xCoxMn32−yFeyGa18. It was found that the magnetic entropy change, ΔS, associated with the inverse MCE in the vicinity of the temperature of the magneto-structural transition, TM, persists in a range of (125-5) J/(kg K) for a magnetic field change ΔH=5 T. The corresponding temperature varies with composition from 143 to 400 K. The MT in Ni50Mn50−xInx (x=13.5) results in a transition between two paramagnetic states. Associated with the paramagnetic austenite-paramagnetic martensite transition ΔS=24 J/(kg K) was detected for ΔH=5 T at T=350 K. The variation in composition of Ni2MnGa can drastically change the magnetic state of the martensitic phase below and in the vicinity of TM. The presence of the martensitic phase with magnetic moment much smaller than that in the austenitic phase above TM leads to the large inverse MCE in the Ni42Co8Mn32−yFeyGa18 system. The adiabatic change of temperature (ΔTad) in the vicinity of TC and TM of Ni50Mn35In15 and Ni50Mn35In14Z (Z=Al, Ge) was found to be ΔTad=−2 K and 2 K for ΔH=1.8 T, respectively. It was observed that |ΔTad|≈1 K for ΔH=1 T for both types of transitions. The results on resistivity, magnetoresistance, Hall resistivity in some In-based alloys are discussed.  相似文献   

4.
Melt spun Ni50−xMn37+xIn13 (2≤x≤5) ribbons were investigated for the structure, microstructure, magneto-structural transitions and inverse magnetocaloric effect (IMCE) associated with the first-order martensitic phase transition. The influence of excess Mn in Ni site (or Ni/Mn content) on the martensite transition and the associated magnetic and magnetocaloric properties are discussed. It was found that with the increase in Mn content, the martensitic transition shifted from 325 to 240 K as x is varied from 2 to 4, and the austenite phase was stabilized at room temperature. The x=5 ribbon did not show the martensitic transition. For the x=3 ribbon, the structural and magnetic transitions are close together unlike in the x=4 ribbon in which they are far (∼60 K) apart. The zero field cooled and field cooled curves support the presence of exchange bias blocking temperature due to antiferromagnetic interactions in the ribbons. A large change in the magnetization between the martensite and austenite phases was observed for a small variation in the Ni/Mn content, which resulted in large IMCE. A large positive magnetic entropy change (ΔSM) of 32 J/kg K at room temperature (∼ 300 K) for a field change of 5 T with a net refrigeration capacity of 64 J/kg was obtained in the Ni47Mn40In13 ribbon.  相似文献   

5.
In the framework of the Landau theory of phase transitions, the influence of the magnetoelastic interaction on structural transitions in cubic ferromagnetics with a positive first magnetic anisotropy constant is analyzed. It is shown that structural transitions are not accompanied by a reorientation of magnetization in this case. The phase diagrams of such ferromagnetics either contain a termination point of the structural transition or a critical point in which the first-order transition is replaced by a second-order one. Magnetoelastic interaction also leads to the appearance of an interval of the ferromagnetic parameters in which a coupled first-order structural-magnetic transition exists. The phase T?x diagram for Heusler Ni2+x Mn1?x Ga alloys is calculated, which is in good agreement with the experimental phase diagram of these alloys.  相似文献   

6.
胡凤霞  沈保根  孙继荣 《中国物理 B》2013,22(3):37505-037505
Our recent progress on magnetic entropy change (ΔS) involving martensitic transition in both conventional and metamagnetic NiMn-based Heusler alloys is reviewed. For the conventional alloys, where both martensite and austenite exhibit ferromagnetic (FM) behavior but show differentmagnetic anisotropies, a positive ΔS as large as 4.1 J·kg-1·K-1 under a field change of 0–0.9 T was first observed at martensitic transition temperature TM ~ 197 K. Through adjusting the Ni:Mn:Ga ratio to affect valence electron concentration e/a, TM was successfully tuned to room temperature, and a large negative ΔS was observed in a single crystal. The -ΔS attained 18.0 J·kg-1·K-1 under a field change of 0–5 T. We also focused on the metamagnetic alloys that show mechanisms different from the conventional ones. It was found that post-annealing in suitable conditions or introducing interstitial H atoms can shift the TM across a wide temperature range while retaining the strong metamagnetic behavior, and hence, retaining large magnetocaloric effect (MCE) and magnetoresistance (MR). The melt-spun technique can disorder atoms and make the ribbons display a B2 structure, but the metamagnetic behavior, as well as the MCE, becomes weak due to the enhanced saturated magnetization of martensites. We also studied the effect of Fe/Co co-doping in Ni45(Co1-xFex)5Mn36.6In13.4 metamagnetic alloys. Introduction of Fe atoms can assist the conversion of the Mn–Mn coupling from antiferromagnetic to ferromagnetic, thus maintaining the strong metamagnetic behavior and large MCE and MR. Furthermore, a small thermal hysteresis but significant magnetic hysteresis was observed around TM in Ni51Mn49-xInx metamagnetic systems, which must be related to different nucleation mechanisms of structural transition under different external perturbations.  相似文献   

7.
We outline the microstructural, martensitic transformation and magnetic properties of Heusler alloys with starting compositions Ni50Mn37Sn13, Ni50Mn36In14, and Mn50Ni40In10, produced by melt spinning. The ribbons were obtained in argon environment at a high wheel linear speed of 48 m s−1 (typical dimensions: 1.2-2.0 mm in width, 4-12 mm in length, and 7-12 μm in thickness). EDS microanalysis showed that the resulting average elemental chemical composition is slightly shifted with respect to the starting one. Ribbons are fully crystalline and tend to show a highly ordered columnar-like microstructure with grains running through the entire ribbon thickness; the larger dimension of the grains is perpendicular to the ribbon plane. As-spun alloys were single-phase with ferromagnetic bcc L21 austenite as high-temperature parent phase. At low temperatures austenite transforms into a structurally modulated martensite with a lattice symmetry that depends on the system (7 M orthorhombic for Ni50Mn37Sn13, 10 M monoclinic for Ni50Mn36In14, and 14 M monoclinic for Mn50Ni40In10). Magnetization isotherms measured in the temperature interval where martensite thermally transforms into austenite confirmed the occurrence of field-induced reverse martensitic transition in the alloys studied.  相似文献   

8.
The effects of Sn addition on phase transformation behavior and magnetocaloric properties of Mn50Ni25Ga25−xSnx (x=0, 0.1, 0.5, 1 and 2 at%) alloys were investigated in this work. The results show that the addition of Sn reduces the structural transformation temperatures. It is found that the second phase exists in the austenite matrix of the as-casted alloys at room temperature. After being annealed at 1073 K for 48 h, the precipitates totally soluted into the matrix. Magnetization measurements indicate that the saturation magnetizations of the alloys increase significantly with increase in Sn contents. In addition, the ΔMS obviously increases with increase in the Sn contents, implying the higher efficiency shift of the martensitic transformation temperature under the magnetic field.  相似文献   

9.
The effect of Ge substitution on the magnetic, magnetocaloric and transport properties of Ni45Co5Mn38Sb12−xGex (x=0-3) has been investigated. The decrease in the exchange interaction brought by Ge substitution can be seen from the reduction in the magnetization of austenite phase and the increase in the martensitic transition temperature. The magnetocaloric effect and the magnetoresistance values are found to be quite sensitive to small changes in Sb/Ge ratio. Taking into account various properties, the present series seems to be a promising multifunctional system.  相似文献   

10.
谭昌龙  姜久兴  田晓华  蔡伟 《中国物理 B》2010,19(10):107102-107102
The effect of Co content on magnetic property and phase stability of Ni50-xMn25Ga25Cox ferromagnetic shape memory alloys has been investigated using first-principles calculations. The total energy difference between paramagnetic and ferromagnetic state of austenite plays an important role in the magnetic transition. The high Curie temperature can be attributed to the stronger Co-Mn exchange interaction as compared to the Ni-Mn one. The phase stability of Ni50-xMn25Ga25Cox austenite increases with increasing Co content, which is discussed based on the electronic structure.  相似文献   

11.
In Ni2+x Mn1?x Ga shape-memory ferromagnetic alloys with coincident magnetic and structural phase transitions, a reversible structural field-induced phase transition was observed at constant temperature and pressure in magnetic fields of about 10 T. Computational results are in qualitative agreement with experiment.  相似文献   

12.
Ni-rich Heusler alloys Ni52Mn48−xInx (x=15.5, 16 and 16.5) were prepared by the arc melting method. X-ray diffraction analysis revealed that the martensite has orthorhombic structure (S.G. Pmm2) at room temperature. The only alloy with x=15.5 has structural transmission from martensite to austenite without any magnetic transmission. The temperature dependence and the field dependence of the magnetization measurement indicated that the magnetization increased with the decreasing of the concerntration of Mn. The lesser the Mn atoms located in the In atom sites, the weaker the total AFM interaction in the system. Giant entropy changes ΔSM(T, H) were found in Ni52Mn48−xInx alloys with the maximum ΔSM value of 22.3 J kg K for the sample with x=16.5 at 270 K under the magnetic field change of 1.5 T.  相似文献   

13.
The effects of Al substitution on the phase transitions and magnetocaloric effect of Ni43Mn46Sn11−xAlx (x=0-2) ferromagnetic shape memory alloys were investigated by X-ray diffraction and magnetization measurements. With the increase of Al content, the cell volume decreases due to the smaller radius of Al, and the martensitic transformation temperature increases rapidly, while the Curie temperature of austenitic phase shows a small increase. A large positive and a negative magnetic entropy change were observed near the first-order martensitic transition and the second-order magnetic transition, respectively. The magnetic entropy changes, hysteresis behavior, and refrigerant capacity near the two transitions are compared.  相似文献   

14.
A model is proposed for describing the experimentally observed martensite and magnetic domain structures in Heusler ferromagnetic alloys Ni2+x Mn1?x Ga. On the basis of this model, the field dependences of magnetization and deformation of the alloys are calculated numerically and an expression for the maximum attainable strains induced by external magnetic fields in these alloys is derived. It is shown that for small values of the effective elastic modulus and demagnetizing factor of alloys, the strains induced by the magnetic field may attain maximum possible values of approximately 5%, which are determined by lattice distortions as a result of the martensite transition in fields of about 1 kOe.  相似文献   

15.
Magnetic and structural transitions of non-stoichiometric Ni50+xMn25−x/2Ga25−x/2 (x=2–5) alloys are systematically investigated. Differential scanning calorimetry and modified thermogravimetry (TG) are used to measure magnetic and structural transitions simultaneously. The structural transition temperatures increase monotonically with increasing Ni substitution for Mn and Ga. Different magnetic transition sequences on heating were observed from ferromagnetic martensite to ferromagnetic autensite, then to paramagnetic autensite, from ferromagnetic martensite to paramagnetic austensite or from ferromagnetic martensite to paramagnetic martensite, respectively. Three kinds of NiMnGa alloys were obtained according to the sequence of the structural and magnetic transition, whose structural transition temperatures are lower, equal to or higher than the magnetic transition temperatures.  相似文献   

16.
Magnetic measurements (temperature and field dependence) on Heusler alloys Ni2(Ti, Mn)Sn and Co2(Ti, Mn)Sn were performed in the ferro- and para-magnetic region. In both systems the composition range was from x = 0 to x = 1. All the Co2(Ti, Mn)Sn samples are ferromagnetic; in the system Ni2Ti1?xMnxSn for x ? 0.2. Our interpretation of the magnetic data differs from that of previous authors.  相似文献   

17.
We have investigated the magnetic and electrical transport properties of Si1−xMnx single crystals grown by the vertical Bridgman method. The alloys with Mn concentrations up to x=0.64 have weak ferromagnetic ordering around TC∼30 K. However, Si0.25Mn0.75 alloys show weak ferromagnetic ordering at 70 K and antiferromagnetic ordering at 104 K, which is confirmed by magnetization and electrical transport studies.  相似文献   

18.
Mn-doped GaN films (Ga1−xMnxN) were grown on sapphire (0 0 0 1) using Laser assisted Molecular Beam Epitaxy (LMBE). High-quality nanocrystalline Ga1−xMnxN films with different Mn concentration were then obtained by thermal annealing treatment for 30 min in the ammonia atmosphere. Mn ions were incorporated into the wurtzite structure of the host lattice by substituting the Ga sites with Mn3+ due to the thermal treatment. Mn3+, which is confirmed by XPS analysis, is believed to be the decisive factor in the origin of room-temperature ferromagnetism. The better room-temperature ferromagnetism is given with the higher Mn3+ concentration. The bound magnetic polarons (BMP) theory can be used to prove our room-temperature ferromagnetic properties. The film with the maximum concentration of Mn3+ presents strongest ferromagnetic signal at annealing temperature 950 °C. Higher annealing temperature (such as 1150 °C) is not proper because of the second phase MnxGay formation.  相似文献   

19.
We have studied the isothermal entropy change around a first-order structural transformation and in correspondence to the second-order Curie transition in the ferromagnetic Heusler alloy Ni2.15Mn0.85Ga. The results have been compared with those obtained for the composition Ni2.19Mn0.81Ga, in which the martensitic structural transformation and the magnetic transition occur simultaneously. With a magnetic field span from 0 to 1.6 T, the magnetic entropy change reaches the value of 20 J/kg K when transitions are co-occurring, while 5 J/kg K is found when the only structural transition occurs. Received 27 September 2002 / Received in final form 17 February 2003 Published online 11 April 2003 RID="a" ID="a"e-mail: solzi@fis.unipr.it  相似文献   

20.
The phase diagram of ferromagnetic alloys Ni2+x Mn1?x Ga is reconstructed on the basis of temperature dependences of the resistance. It is seen from this diagram that for small x, structural transitions from the cubic to the tetragonal phase are preceded by structural transformations in the cubic phase. In the framework of the phenomenological Landau theory of phase transitions, phase diagrams of the structural and magnetic phase transitions in these alloys are analyzed with regard for the modulation order parameter. It is shown that premartensitic and postmartensitic phase transitions related to the appearance of the modulated structure can occur along with martensitic transformations. The strain and modulation order parameters substantially affect the magnetic phase transitions via the interaction with the magnetic order parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号