首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report on the growth of TiO2 nanotube arrays (TNAs) on Ti foil with laser-drilled microhole arrays (MHAs). The MHAs promoted the adhesion of the TNA film to Ti substrate, which is well suited for flexible dye-sensitized solar cells (DSSCs). The MHA photoanode and TNAs were characterized by SEM, 3D optical profiling, XRD and TEM. For such a flexible MHA photoanode, the TNA-based DSSC was assembled using a platinized conductive glass counter electrode, and a conversion efficiency of 3.45% was achieved under AM 1.5 condition. A flexible TNA-based DSSC was also fabricated using a flexible MHA photoanode combined with a platinized indium tin oxide-polyethylene naphthalate counter electrode, which achieved 2.67% photovoltaic conversion efficiency under simulated AM 1.5 sunlight.  相似文献   

2.
An increasing energy demand and environmental pollution create a pressing need for clean and sustainable energy solutions. TiO2 semiconductor material is expected to play an important role in helping solve the energy crisis through effective utilization of solar energy based on photovoltaic devices. Dye-sensitized solar cells (DSSCs) are potentially lower cost alternative to inorganic silicon-based photovoltaic cells. In this study, we report on the fabrication of DSSCs from anodic TiO2 nanotubes (NT) powder, produced by rapid breakdown potentiostatic anodization of Ti foil in 0.1 M HClO4 electrolyte, as photoanode. TiO2 NT powders with a typical NT outer diameter of approximately 40 nm, wall thickness of approximately 8–15 nm, and length of about 20–25 μm, have been synthesized. The counter electrode was made by electrodeposition of Pt from an aqueous solution of 5 mM H2PtCl6 onto fluorine-doped tin oxide (FTO) glass substrate. The above front-side illuminated DSSCs were compared with back-side illuminated DSSCs fabricated from anodic TiO2 NTs that were grown on the top of Ti foil as photoanode. The highest cell efficiency was 3.54% under 100 mW/cm2 light intensity (1 sun AM 1.5G light, Jsc = 14.3 mA/cm2, Voc = 0.544 V, FF = 0.455). To the best of our knowledge, this is the first report on the fabrication of DSSC from anodic TiO2 NTs powder. The TiO2/FTO photoanodes were characterized by FE-SEM, XRD, and UV–Visible spectroscopy. The catalytic properties of Pt/FTO counter electrodes have been examined by cyclic voltammetry.  相似文献   

3.
In this paper, TiO2 particles (~30 nm) modified with Gd2O3-coating layer (~2 nm) for dye-sensitized solar cells (DSSCs) were fabricated via the hydrothermal method. Among the solar cells based on the Gd3+-doped TiO2 photoanodes, the optimal conversion efficiency was obtained from the 0.025Gd3+-modified TiO2-based cell, with a 17.7% improvement in the efficiency as compared to the unmodified one (7.18%). This enhancement was probably due to the improved UV radiation harvesting via a down-conversion luminescence process by Gd3+ ions, enhancement of visible light absorption and improved dye loading capacity. In addition, after Gd modification, a thin coating could be formed on the TiO2 nanoparticles, which worked as an energy barrier and resulted in a lower charge recombination.  相似文献   

4.
Large-scale macroporous TiO2 nanowires (MTN) were directly grown on spiral-shaped titanium wires as photoanodes of dye-sensitized solar cells (DSSCs) via a facile hydrothermal reaction without any seeds, templates, and TiO2 powder. The MTN thin film was characterized by SEM, XRD and TEM. The studies revealed that the MTN thin film had better mechanical properties and provided an efficient pathway for the diffusion of liquid electrolyte. The efficiency of 0.86% for the 3D DSSC was obtained with a J sc of 2.30 mA/cm2, V oc of 616 mV, and FF of 0.61. This MNT-based mini 3D DSSC is a promising photovoltaic device for applications in the fields of high-integrated micro-electronic equipment.  相似文献   

5.
CdS quantum dot (Qd)-sensitized TiO2 nanotube array photoelectrode is synthesised via a two-step method on tin-doped In2O3-coated (ITO) glass substrate. TiO2 nanotube arrays are prepared in the ethylene glycol electrolyte solution by anodizing titanium films which are deposited on ITO glass substrate by radio frequency sputtering. Then, the CdS Qds are deposited on the nanotubes by successive ionic layer adsorption and reaction technique. The resulting nanotube arrays are characterized by scanning electron microscopy, X-ray diffraction (XRD) and UV–visible absorption spectroscopy. The length of the obtained nanotubes reaches 1.60 μm and their inner diameter and wall thickness are around 90 and 20 nm, respectively. The XRD results show that the as-prepared TiO2 nanotubes array is amorphous, which are converted to anatase TiO2 after annealed at 450 °C for 2 h. The CdS Qds deposited on the TiO2 nanotubes shift the absorption edge of TiO2 from 388 to 494 nm. The results show that the CdS-sensitized TiO2 nanotubes array film can be used as the photoelectrode for solar cells.  相似文献   

6.
The concept of solid-state dye-sensitised TiO2 solar cells with an organic semiconductor as hole-transport medium is studied in detail by examining the dye–hole conductor interface. The facile transfer of holes from Ru-dye core to the hole conductor requires suitable interface modifiers which have the function of dye and hole transport moiety, but with exactly positioned anchor groups and antenna functions. The synthesis and characterisation of such novel low molecular weight multifunctional molecules carrying dye units and triphenylamine moieties are presented and their influence as interface modifiers is studied. This interface modification results in doubling the external quantum efficiency of current conversion via improved charge transfer at the dye–hole conductor interface. Moreover, the recombination processes at this interface are drastically suppressed, which leads to higher open-circuit voltage and consequently higher power-conversion efficiency. The concept is also extended to polymers to obtain dye-centred polymeric hole conductors which carry a single Ru-dye unit in the middle of the poly(vinyltriphenylamine) chain that acts as hole-conductor polymer. The polymerisation was carried out by atom-transfer radical polymerisation of 4-bromostyrene followed by polymer amination and finally metallation with Ru-bis(bipyridyl) precursors . PACS 81.07.Bc; 81.05.Lg; 81.16.Dn; 81.20.Fw; 84.60.Jt  相似文献   

7.
The thin-film photocatalysts TiO2/MoO3 and TiO2/MoO3:V2O5 obtained by a combination of sol–gel and sintering techniques were studied using the photooxidation of probing dyes, EPR spectroscopy, X-ray diffraction analysis, and electron microscopy. It was shown that due to charge accumulation caused by UV irradiation, these photocatalysts retain their oxidative activity and ability for self-sterilization in the dark for a long time after irradiation was terminated (up to 5 h for TiO2/MoO3:V2O5).  相似文献   

8.
Chennan Cai  Fengxia Sun  Yanhui Xu 《Ionics》2018,24(8):2227-2232
It is believed that, as the micropower, lithium ion microbatteries will come into use in implantable medical devices, such as heart pacemaker and neurostimulator. A simple electrochemical synthesis method has been used to prepare TiO2 nanotube array that is expected to be used as the microelectrode in Li-ion microbatteries. The SEM measurements showed that the diameter of the nanotube is in a range of 0.10~0.13 μm; the thickness of the tube wall is about 20~40 nm, and the length of the tube is evaluated to be about 1.47 μm. The charging-discharging measurements have showed us its ultra-long cycle life, i.e., about 6000 cycles; at same time, the discharge capacity of more than 15 μAh/cm2/μm has been remained. It is believed that the nanotube array is a promising candidate for microbattery electrode.  相似文献   

9.
In this paper, we have demonstrated that carbon-doped nanostructured TiO2 (CD ns-TiO2) films could be prepared simply and cheaply with oxalic acid and tetrabutylammonium bromide (Bu4N·Br) as the carbon sources. The surface morphology of the films was a multiple-porous network structure.The average size of nanoparticle was about 40 nm. Carbon doped into substitutional sites of TiO2 has also proven to be indispensable for band-gap narrowing and photovoltaic effect. Carbon doping lowered the band gap of n-TiO2 to 1.98, 1.64, and 1.26 eV. The CD ns-TiO2 film was first used as photoanode for solar cells, exhibiting high photocurrent densities (l.34 mA/cm2) and yielding an overall conversion efficiency (η) of 4.42 %.  相似文献   

10.
Two sets of samples of SnO2/In2O3/TiO2 system have been fabricated with different concentrations of component materials. In the first set TiO2 with rutile structure was used, while in the second set it has the structure of anatase. Thin films (up to 50 nm) of obtained mixtures were deposited. Their sensitivity and selectivity with respect to methane (CH4) were studied. Nanostructure on the basis of 70%SnO2 — 10%In2O3 — 20%TiO2(anatase) exhibits sufficient sensitivity to methane.  相似文献   

11.
Photogreying, the change in brightness on UV irradiation in the absence of oxygen, of TiO2 nanoparticulate dispersions is shown to depend on the nature of the liquid, consistent with a surface reaction. Measurements on a series of TiO2 particles (mainly 75×10 nm) dispersed in, e.g., alkyl benzoate correlate well with those on the same TiO2’s dispersed in a second liquid (e.g. propan-2-ol). Photogreying in propan-2-ol is paralleled by photocatalytic-oxidation activity, indicating a common origin – UV-generation of charge carriers. Further, photogreying parallels Ti3+ formation. Hence, although appearance and the visible spectra of photogreyed particles both differ from those of Ti3+ in ≤10 nm colloidal TiO2, we suggest that photogreying is caused by capture of UV excited electrons to form Ti3+. Surface treatment reduces photogreying, and we speculate that differences between uncoated samples reflect differences in the number of potentially reducible Ti’s.  相似文献   

12.
Nowadays, mixed metal oxide (MMO) anodes are a superior alternative to lead alloys in electrowinning processes. Passivation of titanium substrate is the most common mechanism of deactivation in these anodes. In this research, titanium oxide nanotubes have been utilised as an interlayer between the substrate and a mixed metal oxide coating in order to improve the anode electrochemical behaviour and life via retardation of titanium passivation. Anodising of the substrate was done in 0.5 wt% hydrofluoric acid for 30, 60 and 240 min. The samples were subsequently coated with a coating composed of IrO2-RuO2-Ta2O5. The microstructure of different samples was observed by scanning with an electron microscope, and the electrochemical behaviour of the samples was studied by accelerated life test, cyclic voltammetry and electrochemical impedance spectroscopy. The studies showed that formation of titanium oxide nanotubes with anodising times of 60 and 240 min increases the life of the anode through the provision of a compact coating. The life of the anode which was anodised for 240 min lasted about 20% longer than the sample which had a substrate without any anodised layer.  相似文献   

13.
Spectral and electronic properties of a sensitizing black dye; a 4,4′,4′′-tricarboxy-2,2′:6′,2′-terpyridine)tris(isocyanato) ruthenium(II) complex; for nanocrystalline TiO2 solar cells have been investigated by modern methods of quantum chemistry. The light absorption mechanism in the lowest excited triplet states of the dye was studied. The efficiency of electron injection into nanocrystalline TiO2 is shown to depend on both the nature of charge-transfer states and asymmetric deformation of an excited triplet term of the black dye.  相似文献   

14.
15.
We present the results of a quantum-chemical study of the interface formed by titania nanoparticles and a set of carboxylic moieties, namely, benzoic and bi-isonicotinic acids and a tris-(2, 2′-dcbipyridine) Fe (II) complex placed on the surface of either rutile or anatase polymorphs. The calculations were performed in the spd basis using semiempirical quantum-chemical codes, both sequential and parallel. The results are mainly addressed to the geometry optimization of the adsorbed molecules on the surface, as well as to the adsorption mechanism and the energy of adsorption. The text was submitted by the authors in English.  相似文献   

16.
This paper deals with photocatalytic activity of silver treated TiO2 films. The TiO2 films were deposited on glass substrates by plasma enhanced chemical vapor deposition (PECVD) in a vacuum reactor with radio frequency (RF) low temperature plasma discharge in the mixture of oxygen and titanium isopropoxide vapors (TTIP). The depositions were performed under different deposition conditions. Subsequently, the surface of TiO2 films was modified by deposition of silver nanoparticles. Photocatalytic activity of both silver modified and unmodified TiO2 films was determined by decomposition of the model organic matter (acid orange 7). Selected TiO2 samples were used for tests of antibacterial activity. These tests were performed on Gram-negative bacteria Escherichia coli. The results clearly proved that presence of silver clusters resulted in enhancement of the photocatalytic activity, which was up to four times higher than that for pure TiO2 films.  相似文献   

17.
18.
Self-organized anodic TiO2 nanotube arrays were sensitized with polyaniline by a simple electrodeposite method. The morphological and structural properties studied by scanning electron microscopy and fourier transform infrared spectroscopy reveal the successful deposition of polyaniline on the nanotube arrays. The polyaniline-sensitized TiO2 nanotube arrays exhibit a distinguishable red shift on the absorption spectrum. Electrochemical impedance investigation attested to a significant improvement of the interfacial electron-transfer kinetics for promoted electron–hole effective separation. The as-prepared samples showed a high efficiency for the photoelectrocatalytic degradation of rhodamine B under visible-light irradiation (λ > 400 nm). The enhanced photoelectrocatalytic activity could be attributed to the extended absorption in the visible-light region by the polyaniline and the effective separation of photogenerated carriers driven by the photoinduced potential difference generated at the polyaniline/TiO2 nanotube arrays interface.  相似文献   

19.
Nanocrystalline Li2TiO3 was successfully synthesized using solid-state reaction method. The microstructural and electrochemical properties of the prepared material are systematically characterized. The X-ray diffraction pattern of the prepared material exhibits predominant (002) orientation related to the monoclinic structure with C2/c space group. HRTEM images and SAED analysis reveal the well-developed nanostructured particles with average size of ~40 nm. The electrochemical properties of the prepared sample are carried out using cyclic voltammetry (CV) and chronopotentiometry (CP) using Pt//Li2TiO3 cell in 1 mol L?1 Li2SO4 aqueous electrolyte. The Li2TiO3 electrode exhibits a specific discharge capacity of 122 mAh g?1; it can be used as anode in Li battery within the potential window 0.0–1.0 V, while investigated as a supercapacitor electrode, it delivers a specific capacitance of 317 F g?1 at a current density of 1 mA g?1 within the potential range ?0.4 to +0.4 V. The demonstration of both anodic and supercapacitor behavior concludes that the nanocrystalline Li2TiO3 is a suitable electrode material for supercapattery application.  相似文献   

20.
Structural properties of amorphous TiO2 spherical nanoparticles have been studied in models with different sizes of 2 nm, 3 nm, 4 nm and 5 nm under non-periodic boundary conditions. We use the pairwise interatomic potentials proposed by Matsui and Akaogi. Models have been obtained by cooling from the melt via molecular dynamics (MD) simulation. Structural properties of an amorphous nanoparticle obtained at 350 K have been analyzed in detail through the partial radial distribution functions (PRDFs), coordination number distributions, bond-angle distributions and interatomic distances. Moreover, we show the radial density profile in a nanoparticle. Calculations show that size effects on structure of a model are significant and that if the size is larger than 3 nm, amorphous TiO2 nanoparticles have a distorted octahedral network structure with the mean coordination number ZTi-O ≈6.0 and ZO-Ti ≈3.0 like those observed in the bulk. Surface structure and surface energy of nanoparticles have been obtained and presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号