首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The effects of 0.01 and 0.1 mol B2O3 addition to the microstructure and magnetic properties of a Ni–Zn ferrite composition expressed by a molecular formula of Ni0.4Zn0.6Fe2O4 were investigated. The toroid-shaped samples prepared by pressing the milled raw materials used in the preparation of the composition were sintered in the range of 1000–1300 °C. The addition of 0.01 mol B2O3 increased the grain growth and densification giving rise to reduced intergranular and intragranular porosity due to liquid-phase sintering. The sintered toroid sample at 1300 °C gave the optimum magnetic properties of Br=170 mT, Hc=0.025 kA/m and a high initial permeability value of μi=4000. The increment of the B2O3 content to 0.1 mol resulted in a pronounced grain growth and also gave rise to large porosity due to the evaporation of B2O3 at higher sintering temperatures. Hence, it resulted in an air-gap effect in the hysteresis curves of these samples.  相似文献   

2.
Magnetic properties, microstructure, and phase evolution of Pr lean and boron-enriched PrxFebal.TiyB20−x (x=4–9; y=2.5–5) melt-spinning ribbons with nanostructures have been investigated. Based on thermal magnetic analysis (TMA), for y=2.5, two phases, namely Pr2Fe14B and α-Fe, were found for ribbons with x=9, while additional two metastable phases, Pr2Fe23B3 and Fe3B, existed for x=4, 7 and 8. With the decrease of Pr content, the remanence increases but coercivity decreases. The optimal properties of Br=9.5 kG, iHc=10.7 kOe, and (BH)max=17.8 MG Oe are achieved in Pr9Febal.Ti2.5B11 nanocomposites. On the other hand, higher Ti substitution for Fe in Pr7Febal.TiyB13 ribbons could refine the grain size and suppress the metastable Pr2Fe23B3 and Fe3B phases effectively. The excellent permanent magnetic properties are mainly dominated by the nanoscaled microstructures and the coexistence of sufficient magnetically soft phases, Fe3B, Pr2Fe23B3 and α-Fe, with magnetically hard Pr2Fe14B phase.  相似文献   

3.
In this paper, the effect of microstructural and surface morphological developments on the soft magnetic properties and giant magneto-impedance (GMI) effect of Fe73.5−xCrxSi13.5B9Nb3Au1 (x=1, 2, 3, 4, 5) alloys was investigated. It was found that the Cr addition causes slight decrease in the mean grain size of α-Fe(Si) grains. AFM results indicated a large variation of surface morphology of density and size of protrusions along the ribbon plane due to structural changes caused by thermal treatments with increasing Cr content. Ultrasoft magnetic properties such as the increase of magnetic permeability and the decrease of coercivity were observed in the samples annealed at 540 °C for 30 min. Accordingly, the GMI effect was also observed in the annealed samples.  相似文献   

4.
(Fe50Pt50)100−x-(SiO2)x films (x=0–30 vol%) were grown on a textured Pt(0 0 1)/CrRu(0 0 2) bilayer at 420 °C using glass substrates. FePt(0 0 1) preferred orientation was obtained in the films. Interconnected microstructure with an average grain size of about 30 nm is observed in the binary FePt film. As SiO2 is incorporated, it precipitates as particles are dispersed at FePt grain boundaries. When the content of SiO2 is increased to 13 vol%, columnar FePt with (0 0 1) texture separated by SiO2 is attained. The FePt columns have a length/radius ratio of 2:1. Additionally, the mean grain size is reduced to about 13 nm. The development of this well-isolated columnar structure leads to an enhancement in coercivity by about 44% from 210 to 315 kA/m. As the SiO2 content exceeds 20 vol%, a significant ordering reduction is found accompanied by a transformation of preferred orientation from (0 0 1) to (2 0 0) and the columnar structure disappears, resulting in a drastic degradation in magnetism. The results of our study suggest that isolated columnar, grain refined, (0 0 1)-textured FePt film can be achieved via the fine control of SiO2 content. This may provide useful information for the design of FePt perpendicular recording media.  相似文献   

5.
NdFeNbB with the additions of Dy2O3 and Sn permanent magnets have been attained by means of powder-blending technique, and their magnetic properties, temperature performance and microstructure were studied in this paper. The addition of just 2.0 wt% Dy2O3 or 0.3 wt% Sn proved to be very effective in improving the permanent magnetic properties of NdFeNbB magnets. Dy2O3 additions result in the increase in the Hci and temperature dependence due to the increase of Tc, formation of (NdDy)-rich phase and grain refinement of Φ phase. This improvement of the coercivity stability of the magnets from the addition of Sn is attributed to the smoothing effect of the Sn addition at the grain boundaries. The magnetic properties, the temperature dependence and Curie temperature of NdFeNbB with Dy2O3 and Sn combined addition were found to be considerably improved. From the X-ray diffraction, SEM-EDAX studies and the thermo-magnetic study, the improved properties due to the solution of Dy and Sn to the Φ phase, the reduced Neff and the smaller Φ phase.  相似文献   

6.
《Current Applied Physics》2010,10(3):719-723
In order to improve the corrosion resistance of ceramic coatings formed on Mg–5mass%Li substrate by micro-arc oxidation (MAO) method, two kinds of additives (Na2B4O7 and EDTA) were doped in Na2SiO3–Na3PO4 solution system. The surface and cross-section morphology feature, phase composition and elemental composition were examined by SEM, XRD and EDX, respectively. Corrosion resistance of ceramic coating was tested by electrochemical methods. It was revealed that all coatings were composed of MgO and Mg2SiO4, and had porous surface structure. Doping of additives had little effect on the elemental composition, while it influenced the morphological feature of the coating. The results of electrochemical tests showed that the coatings prepared in the solutions with additive had good corrosion resistance. The addition of EDTA to the solution made coatings thinner and more uniform which resulted in better general corrosion resistance. The addition of Na2B4O7 to the solution made coatings much thicker and compacter, which improved the pitting corrosion resistance.  相似文献   

7.
Mössbauer spectroscopy is used to characterize the crystallite size and structure of CoFe2−xYxO4 (x=0, 0.1, 0.3, 0.5) ferrite nanocrystallites synthesized by the sol-gel auto-combustion method. The effect of the substitution of Fe3+ ions by Y3+ ions on the structure of cobalt ferrite nanocrystallites is investigated. The Mössbauer spectra showed two sets of six-line hyperfine patterns for all the samples, indicating the presence of Fe in both A and B-sites. On increasing the concentration of doped Y, the hyperfine field strength and the isomer shift first increase and then decrease, whereas the quadrupole splitting continuously increases. The superparamagnetism was observed for all the samples and the change of ratio of the superparamagnetism component reflects the size of crystal grain.  相似文献   

8.
In boron-substituted melt-spun Sm(Co,Fe,Cu,Zr)7.5-type alloys a nanocomposite microstructure and high coercivities in both as-spun and short-time annealed ribbons can be obtained. In the present study three different compositions, namely Sm(Co0.73Fe0.1Cu0.09Zr0.04B0.04)7.5, Sm(Co0.70Fe0.1Cu0.12Zr0.04B0.04)7.5 and Sm(Co0.70Fe0.1Ni0.12Zr0.04B0.04)7.5 have been examined in order to investigate the influence of composition on the magnetic properties and the microstructure. Melt-spun ribbons have been obtained and annealing has been followed under argon atmosphere for 30–75 min at 600–870 °C. For the as-spun ribbons the TbCu7-type of structure and fcc-Co as a secondary phase have been identified in the X-ray diffraction patterns. For the annealed ribbons above 700 °C the 1:7 phase transforms into 2:17 and 1:5 phases. The TEM studies have shown a homogeneous nanocrystalline microstructure with average grain size of 30–80 nm. Coercivity values of 15–27 kOe have been obtained from hysteresis loops traced in non-saturating fields. The coercivity decreases with temperature, but it is sufficiently large to maintain values higher than 5 kOe at 380 °C.  相似文献   

9.
The mechanism of the high intrinsic coercivity of the Sm(Co1−xCux)5 (0≦x<1) system was studied by relating the coherency between the lattice constants of hexagonal Sm(Co, Cu)5 and hcp Co to the coercive force. It was found analytically that the intrinsic coercive force reaches a maximum in the composition range from x=0.6 to 0.8, where the lattice mismatch approaches zero, so that there is a strong correlation between lattice matching and coercive force. When a Sm ion was located within a Sm(Co, Cu)5 grain and in the outmost edge of the a and c planes of its grain surrounded or not surrounded by the coherent Co phase, the crystal field parameter at each Sm3+ site was calculated using a point charge model under the assumption that the Co and Cu atoms located in a grain and the hcp Co atoms situated at the interface uniformly have a charge of 3/5−. The results indicated that the Co phase precipitated coherently along the grain boundaries effectively enhances the magnetocrystalline anisotropy of Sm ions located in the outmost edges of the a and c planes of a Sm(Co, Cu)5 grain.  相似文献   

10.
Phase structure and magnetic properties of the as-cast and as-milled/annealed SmCo7−xMox (x=0, 0.1, 0.2, 0.3, 0.4) alloys have been systematically studied. It is found that all the as-cast series alloys are composed of the CaCu5-type and Th2Zn17-type phases. Saturation magnetization of the samples decreases with the Mo content increasing. Intrinsic coercivities (iHc) of no more than 0.06 T are observed in these as-cast samples, due to their rather coarse grain microstructures with an average grain size of 50 μm. The as-milled/annealed SmCo7−xMox powders crystallize in the disordered TbCu7-type (1:7) structure with very fine nanograins, and a minor Co3Mo phase appears in the samples with x=0.1-0.4. High iHc (?0.95 T) are achieved in these samples, with a maximum of 1.26 T located at x=0.2, which can be primarily attributed to strong pinning of the domain wall motion at the nanograin boundaries. The temperature coefficient (β) of the iHc is about −0.22%/°C in the temperature range of 25-400 °C for the as-milled/annealed samples.  相似文献   

11.
The Nd8−xDyxFe87.5B4.5 (x=0–1.0x=01.0) nanocomposites have been prepared by melt spinning and subsequent two-step heat treatment technique. The crystallization behaviors, microstructures and magnetic properties of the samples have been investigated. The experimental results show that the crystallization temperature of α-Fe soft phase has no obvious change through Dy addition while the crystallization temperature of 2:14:1 hard phase increases remarkably with increasing Dy content. By adopting a two-step heat treatment technique, a finer and more uniform microstructure can be developed. A dramatic enhancement of remanence Jr from 0.84 to 1.1 T, coercivity Hcj from 417 to 520 kA/m and energy product (BH)m from 76.8 to 110 kJ/m3 have been obtained in Nd7Dy1Fe87.5B4.5 (30 vol%α-Fe ) nanocomposite.  相似文献   

12.
Nanocrystalline Fe-based alloys are interesting for their soft magnetic properties. Because these alloys are potentially applicable in outdoor-working components, their corrosion behaviour requires careful analysis. This work presents the results of the atmospheric corrosion tests in industrial and rural environments performed for up to 6 months. We compared the corrosion behaviour of two different compositions of NANOPERM-type alloys: Fe87.5Zr6.5B6 and Fe76Mo8Cu1B15 with classical FINEMET alloys of the nominal composition of Fe73.5Cu1Nb3Si13.5B9 type. The techniques of Mössbauer spectroscopy, conversion electron Mössbauer spectroscopy, X-ray diffraction and transmission electron microscopy have been employed to compare their corrosion rate, characterize corrosion products and inspect the structural changes of the nanocrystalline structure. It was found that the Si-containing FINEMET alloys are the most corrosion-resistant whereas worse corrosion properties were observed for molybdenum-containing Fe76Mo8Cu1B15 alloy. The corrosion product formed on the surface of NANOPERM-type alloys showed a needlelike morphology and a poor crystalline order and has been identified as lepidocrocite, γ-FeOOH.  相似文献   

13.
Studies of magnetic and structural properties of Fe3.5Co66.5Si12−xGexB18 (x=0, 3, and 6) soft magnetic ribbons obtained by melt-spinning were performed. The samples were submitted to Joule-heating treatments with different maximum current values (0.01, 0.05, 0.1, 0.2, and 0.8 A, respectively) with steps of 0.01 A and times by step of 1, 2, and 10 s). X-ray diffraction, temperature dependence of magnetization (for the as-quenched samples), coercivity and giant magnetoimpedance (GMI), measured at different frequencies (100, 500, and 900 kHz, respectively) were performed. All the samples crystallized at annealing currents higher than 0.4 A, which was consistent with the magnetic hardening of the material. Coercivities less than 1 A/m were obtained for the three samples between 0.1 and 0.2 A. Maximum value of GMI response was observed for the sample without Ge in the as-quenched state.  相似文献   

14.
Nanocrystalline (Nd,Dy)16(Fe,Co)76−xTixB8 magnets were prepared by mechanical alloying and respective heat treatment at 973–1073 K/30–60 min. An addition of 0.5 at % of Ti results in an increase of coercivity from 796 to 1115 kA m−1. Partial substitution of Nd by Dy results in an additional increase of coercivity up to 1234 kA m−1. Mössbauer investigations shows that for x?1 the (Nd,Dy)16(Fe,Co)76−xTixB8 powders are single phase. For higher Ti contents (x>1) the mechanically alloyed powders heat treated at 973 K are no more single phase, and the coercivity decreases due to the presence of an amorphous phase. A heat treatment at a higher temperature (1073 K) for longer time (1 h) results in the full recrystallisation of powders. The mean hyperfine field of the Nd2Fe14B phase decreases for titanium contents of 0?x?1, and remains constant for x>1. This indicates that the Ti content in the Nd2Fe14B phase reaches its maximum value.  相似文献   

15.
This paper reports the static and hyper-frequency magnetic properties, as well as their relationship with microstructure, of the ferromagnetic-ferroelectric co-fired composite ceramic, (1−x)Ba2Zn1.2Cu0.8Fe12O22-xPb(Ni1/3Nb2/3)0.8Ti0.2O3. The X-ray diffraction results did not detect any other phase in the co-fired ceramics, but found a crystal structural distortion of ferrite phase. Scanning electron microscopy photos showed that two phases’ grains matched well and stacked compactly and the hexagonal ferrite changed its grain morphology. The saturation magnetization increased with the reduction of magnetic phase in the range of 0<x<0.65 because of the stress-induced structural distortion. The permeability decreases monotonically with the reduction of magnetic phase in the whole composition range.  相似文献   

16.
The α-Fe2O3/SiO2 nanocomposite containing 45 wt% of hematite was prepared by the sol-gel method followed by heating in air at 200 °C. The so-obtained composite of iron(III) nanoparticles dissolved in glassy silica matrix was investigated by X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. XRPD confirms the formation of a single-phase hematite sample, whereas TEM reveals spherical particles in a silica matrix with an average diameter of 10 nm. DC magnetization shows bifurcation of the zero-field-cooled (ZFC) and field-cooled (FC) branches up to the room temperature with a blocking temperature TB=65 K. Isothermal M(H) dependence displays significant hysteretic behaviour below TB, whereas the room temperature data were successfully fitted to a weighted Langevin function. The average particle size obtained from this fit is in agreement with the TEM findings. The small shift of the TB value with the magnetic field strength, narrowing of the hysteresis loop at low applied field, and the frequency dependence of the AC susceptibility data point to the presence of inter-particle interactions. The analysis of the results suggests that the system consists of single-domain nanoparticles with intermediate strength interactions.  相似文献   

17.
Three series of SmCo5.6Ti0.4 samples were prepared by quenching, melt spinning, and ball milling, respectively. Annealing at different temperatures was carried out for the three series. The influence of the processing routes on the structural and magnetic properties was systematically investigated for this alloy. The as-quenched bulk sample consisted of three phases with a rather coarse grain microstructure. Low intrinsic coercivity (iHc) of 0.12 T was obtained in this sample. While the as-spun ribbons and as-milled/annealed powders showed the CaCu5-type phase (1:5) plus Th2Zn17-type phase (2:17), and the 1:5 phase plus TbCu7-type phase (1:7), respectively, with nanograin microstructure. The iHc of as-spun ribbons and as-milled/annealed (700 °C for 2 h) powders was found to be 0.59 and 2.23 T, respectively. Coercivity mechanism of these as-spun ribbons is mainly of nucleation type. In the as-milled/annealed powders, the network of the nanograin boundaries is believed to provide strong pinning sites for the domain wall movement.  相似文献   

18.
Nd-YAG laser surface treatment was conducted on 7075-T651 aluminum alloy with the aim of improving the stress corrosion cracking resistance of the alloy. Laser surface treatment was performed under two different gas environments, air and nitrogen. After the laser treatment, coarse constituent particles were removed and fine cellular/dendritic structures had formed. In addition, for the N2-treated specimen, an AlN phase was detected. The results of the stress corrosion test showed that after 30 days of immersion, the untreated specimen had been severely attacked by corrosion, with intergranular cracks having formed along the planar grain boundaries of the specimen. For the air-treated specimen, some relatively long stress corrosion cracks and a small number of relatively large corrosion pits were found. The cracks mainly followed the interdendritic boundaries; the fusion boundary was found to be acting as an arrestor to corrosion attacks. In contrast, only few short stress corrosion cracks appeared in the N2-treated specimen, indicating an improvement in corrosion initiation resistance. The superior corrosion resistance was attributed to the formation of the AlN phase in the surface of the laser-melted layer, which is an electrical insulator. The electrochemical impedance measurements taken during the stress corrosion test showed that the film resistance of the laser-treated specimens was always higher than that of the untreated specimen, with the N2-treated specimen showing the highest resistance.  相似文献   

19.
A nanostructure with α″-Fe16N2 nanocrystallites embedded in an amorphous matrix was prepared by annealing Fe92B8 amorphous alloy in a NH3+H2 gas mixture stream with subsequent quenching and annealing. The average grain size and the volume fraction of the α″-Fe16N2 phase are found to be 18 nm and 54%, respectively. The prepared sample exhibits a saturation magnetization of 2.35 T, a coercive force of 11.4 A/m, an initial permeability of 9.1×104 and a relaxation frequency of 4.1×104 Hz.  相似文献   

20.
In order to clarify the origin of the high thermal stability of the microstructure in bcc-Fe/amorphous two-phase nanocrystalline soft magnetic materials, we have investigated the changes in the magnetic and microstructural properties upon isothermal annealing at 898 K for an Fe89Zr7B3Cu1 alloy by means of transmission electron microscopy, Mössbauer spectroscopy and DC magnetometry. The mean grain size was found to remain almost unchanged at the early stage of annealing. However, rapid grain coarsening was evident at an annealing time of 7.2 ks where the intergranular amorphous phase begins to crystallize into Fe23Zr6. The grain growth process with a kinetic exponent of 1.6 is observed for the growth process beyond this annealing time, reflecting the disappearance of the intergranular amorphous phase. Our results confirm that the thermal stability of the bcc-Fe/amorphous two-phase nanocrystalline soft magnetic alloys is governed by the residual amorphous phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号