共查询到20条相似文献,搜索用时 15 毫秒
1.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors. 相似文献
2.
J. Pérez P.J. Silva C.A. Durante-Rincón J. Primera Ferrer J.R. Fermin 《Journal of magnetism and magnetic materials》2008
Electron paramagnetic resonance (EPR) experiments were made in the diluted magnetic semiconductor CuGa1−xMnxTe2, in the temperature range 70<T<300 K. The samples were synthesized by direct fusion of stoichiometric mixtures of the elements, with Mn composition from x=0.0 to 0.25. The EPR spectra were measured as function of temperature, Mn composition, and field orientation. The temperature variation of the resonance field shows a critical point at about 235 K, and is associated with a transition from the ferromagnetic to the superparamagnetic state. The resonance field was also measured as a function of the field angle, and displays a well-defined uniaxial symmetry. This uniaxial field depends on the Mn concentration and is due to tetragonal distortions induced by Mn2+ at Ga sites, and the demagnetizing effects due to formation of ferromagnetism (FM) Mn-clusters. 相似文献
3.
L.M. da Silva M.C. de Melo A.N. Medina F.G. Gandra 《Physica B: Condensed Matter》2009,404(19):3018-3020
We report on results of X-ray powder diffraction, magnetization and specific heat measurements of the pseudo-ternary (Ce1−xLax)PdIn2 system with x=0; 0.2; 0.4 and 0.6. The results show a linear increase of the unit cell volume and a reduction of the ferromagnetic transition as La content increases. The Debye temperature, Sommerfeld coefficient and crystal field parameters were estimated from specific heat data, and are found to be weakly dependent of the Ce concentration. Also, the variation of magnetic entropy at TC is only weakly dependent on x (ΔS≅0.92Rln2) indicating that TK/TC is approximately constant along the series. The TC and TK behaviors are explained by the variation of the exchange parameter due to the volume change when Ce is replaced by La. Our results indicate that the chemical pressure is the dominant effect rather than the chemical disorder for determining the physical proprieties of the (Ce1−xLax)PdIn2 system. 相似文献
4.
Younghun Hwang Sunglae ChoHyekyeong Kim Youngho Um 《Journal of magnetism and magnetic materials》2006
We have investigated the magnetic and electrical transport properties of Si1−xMnx single crystals grown by the vertical Bridgman method. The alloys with Mn concentrations up to x=0.64 have weak ferromagnetic ordering around TC∼30 K. However, Si0.25Mn0.75 alloys show weak ferromagnetic ordering at 70 K and antiferromagnetic ordering at 104 K, which is confirmed by magnetization and electrical transport studies. 相似文献
5.
Alka V. Deshmukh S.M. Yusuf N.P. Lalla 《Journal of magnetism and magnetic materials》2010,322(5):536-1217
Present study reports the detailed structural and magnetic, as well as chemical analysis of polycrystalline Zn1−xMnxO (where x=0, 0.005, 0.01, 0.03, 0.05 and 0.1) samples synthesized by the high-temperature solid state reaction route. X-ray diffraction studies reveal the presence of secondary phase for higher Mn-doping concentrations (x≥0.03). Secondary phase formation having spinel structure is confirmed and reported as an evidence for the first time using transmission electron microscopy study. Chemical investigations using X-ray photoelectron spectroscopy showed the presence of Mn in two valence states. From the observed results we are of the opinion that Zn2+ ions, mainly present at or near grain boundaries, diffuse into manganese oxide to form a stable spinel phase ZnxMn3−xO4 at or near the grain boundaries of ZnO/Zn1−xMnxO. Magnetization measurements did not show any magnetic transition down to 5 K. 相似文献
6.
7.
Pushan Banerjee 《Journal of Physics and Chemistry of Solids》2008,69(11):2670-2673
Cd1−xMnxTe thin films were fabricated by thermal interdiffusion of multilayers of sputtered compound semiconductors as well as thermally evaporated elements. Electron microscopy revealed their nanostructures. The alloys have been investigated for evaluation of optical and electronic parameters. Spectrophotometry helped to find out the bandgap and composition; photoluminescence was used for observing relative transition probabilities at room temperature. Photoresponse showed the light dependence of the resistance of the alloy films. Hall measurements and four-probe tests indicated the influence of manganese on the room-temperature electronic properties of the alloy. 相似文献
8.
Zan Yao 《Journal of magnetism and magnetic materials》2009,321(3):203-206
Phase structure and magnetic properties of the as-cast and as-milled/annealed SmCo7−xMox (x=0, 0.1, 0.2, 0.3, 0.4) alloys have been systematically studied. It is found that all the as-cast series alloys are composed of the CaCu5-type and Th2Zn17-type phases. Saturation magnetization of the samples decreases with the Mo content increasing. Intrinsic coercivities (iHc) of no more than 0.06 T are observed in these as-cast samples, due to their rather coarse grain microstructures with an average grain size of 50 μm. The as-milled/annealed SmCo7−xMox powders crystallize in the disordered TbCu7-type (1:7) structure with very fine nanograins, and a minor Co3Mo phase appears in the samples with x=0.1-0.4. High iHc (?0.95 T) are achieved in these samples, with a maximum of 1.26 T located at x=0.2, which can be primarily attributed to strong pinning of the domain wall motion at the nanograin boundaries. The temperature coefficient (β) of the iHc is about −0.22%/°C in the temperature range of 25-400 °C for the as-milled/annealed samples. 相似文献
9.
The magnetic and transport properties in the perovskite Sr1−xLaxFe1−xMnxO3 have been explored. As x rises, the systemic ferromagnetism increases gradually and cluster-spin-glass state occurs in the low-temperature region. For 0.3?x?0.7, the ferromagnetic phase separation from the paramagnetic phase was observed from the results of electron-spin-resonance measurement. Although all samples show a semiconducting behavior, their transport properties are dominated by two different mechanisms, namely, the electronic transport of x?0.5 samples is realized by thermal activation but the variable-range hopping is applied in x?0.7 ones. The different transport mechanism can be understood from the Mn/Fe ions interaction. 相似文献
10.
In this paper, the structural, thermal and magnetic properties of Ni1−xMnxFe2O4 are presented. It is observed that high concentration of Mn2+ ions into NiFe2O4 tends to reduce the particle size. Calcination at 500 °C has resulted in the growth of Ni1−xMnxFe2O4 nanoparticles, but the calcination at 900 °C has led to the evaporation of the majorities of the polyvinyl alcohol. After calcination at 900 °C, crystallographically oriented NiMnFe2O4 nanoparticles are formed. These Ni1−xMnxFe2O4 nanoparticles show hysteresis behaviour upon magnetization. On the other hand, saturation magnetization (Ms) values decreases with increasing Mn content in ferrite due to the influence of Mn2+ ion in the sub lattice. 相似文献
11.
Puneet Sharma R.A. Rocha S.N. Medeiros B. Hallouche A. Paesano Jr. 《Journal of magnetism and magnetic materials》2007
Barium hexaferrite powders with manganese substitution were prepared by mechanosynthesis. The structural and magnetic properties were characterized by X-ray diffractometer and vibration sample magnetometer, respectively. XRD patterns were refined by Rietveld method. Preferential site occupation of manganese ion was investigated by room temperature (RT) Mössbauer measurements. XRD results showed a single-phase barium hexaferrite with some residual hematite. Crystallite size was observed to decrease with substitution amount. Lower saturation magnetization and increased coercivity is observed in substituted samples. RT Mössbauer measurements showed that manganese ions preferentially occupy 12k, 4f2, and 2a sites. 相似文献
12.
J.L. Harris L.V. Shapoval L.H. Strauss 《Journal of magnetism and magnetic materials》2009,321(8):1072-1076
Polycrystalline samples of the II-V-diluted magnetic semiconductor Cd1−xMnxSb (x=0.05-0.20) were synthesized. Standard high temperature ceramic methods under an inert atmosphere were utilized for sample fabrication. Structural characterization was done using X-ray diffractometry (XRD), which indicated that a simple substitution of Mn for Cd is probably not occurring. Hysteresis, ac susceptibility, dc magnetization, and spontaneous magnetization measurements were performed for Cd0.90Mn0.10Sb. The hysteresis data indicated the presence of a ferromagnetic component. Ferromagnetism in the Cd0.90Mn0.10Sb system is likely due to two sources: Mn spins in small Mn-rich regions and a small amount of MnSb in a minority phase. Analysis of the spontaneous magnetization as a function of temperature for Cd0.90Mn0.10Sb yielded the value 0.172 for the critical exponent β. In MnSb, β was found to have the value 0.379, which is close to the theoretical value for 3D-Heisenberg systems. Thus, in Cd0.90Mn0.10Sb, the ferromagnetism is not of the 3D-Heisenberg type; rather, it is closer to 2D Ising behavior, indicating reduced effective dimensionality. 相似文献
13.
Ferromagnetic Ga1−xMnxAs layers (where x=1.4-3.0%) grown on (1 0 0) GaAs substrates by molecular beam epitaxy were characterized using Raman spectroscopy. As Mn is introduced into GaAs, a marked increase in disorder in the material occurs, as indicated by the growth of the disorder-allowed transverse-optical Raman line. Another important result is that as the Mn concentration in Ga1−xMnxAs increases further beyond ca. 2%, Raman-active coupled-plasmon-longitudinal-optical phonon modes arise, which signals the increasing presence of holes, and thus provides a useful tool for determining their concentration. Using the depletion-layer approach from the Raman spectroscopy data, we determined the carrier concentration for samples with x=2.2% and 3.0% was to be 7.2×1019 and 8.3×1020 cm−3, respectively. 相似文献
14.
Qin Wang 《Journal of magnetism and magnetic materials》2009,321(17):2622-2626
Gd3+-substituted micro-octahedron composites (FexCo1−x/CoyGdzFe3−y−zO4) in which the Fe-Co alloy has either a bcc or fcc structure and the oxide is a spinel phase were fabricated by the hydrothermal method. The X-ray diffraction (XRD) patterns indicate that the as-synthesized Gd3+-substituted micro-octahedron composites are well crystallized. Scanning electron microscopy (SEM) images show that the final product consists of larger numbers of micro-octahedrons with the size ranging from 1.3 to 5 μm, and the size of products are increased with increasing the concentration of KOH. The effect of the Co2+/Fe2+ ratio (0?Co2+/Fe2+?1) and substitution Fe3+ ions by Gd3+ ions on structure, magnetic properties of the micro-octahedrons composites were investigated, and a possible growth mechanism is suggested to explain the formation of micro-octahedrons composites. The magnetic properties of the structure show the maximal saturation magnetization (107 emu/g) and the maximal coercivity (1192 Oe) detected by a vibrating sample magnetometer. 相似文献
15.
H.N. Hu H.Y. ChenS.Y. Yu L.J. ChenJ.L. Chen G.H. Wu 《Journal of magnetism and magnetic materials》2006
A series of CoxPd1−x (x=0.37–0.85) nanowire arrays have been successfully deposited in a single Co2+/ Pd2+=20:1 solution by applying the various depositing potentials. We found that the nanowires are the composites of CoPd alloy with some Co and Pd clusters, but the overall structure of the composite wires followed the binary phase relation of Pd–Co. The existence of Pd content makes the nanowires structured in FCC phase, except for Co0.85Pd0.15 sample in which some HCP Co phase coexists with the dominating FCC phase. Between Co-rich and Pd-rich nanowires, we found that the optimized composition for CoxPd1−x nanowire is around Co0.73Pd0.27 in which the coercivity (Hc) and squareness (Mr/Ms) have their maximum values consistently. 相似文献
16.
A.G. Kuchin N.V. Mushnikov M.I. Bartashevich O. Prokhnenko V.I. Khrabrov T.P. Lapina 《Journal of magnetism and magnetic materials》2007
Magnetic properties of the Ce2Fe17−xMnx, x=0–2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5–1 are helical antiferromagnets and those with 1<x?2 are helical ferromagnets or helical antiferromagnets at low and high T, respectively. Mn ions in the system carry average magnetic moment of 3.0±0.2 μB that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce2Fe17−xMnx compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce2Fe17−xMnx helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce2Fe17−xMnx, x=0.5–2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated. 相似文献
17.
Ferromagnetic Ga1−xMnxAs layers (where x≈4.7–5.5%) were grown on (1 0 0) GaAs substrates by molecular beam epitaxy. These p-type (Ga,Mn)As films were revealed to have a ferromagnetic structure and ferromagnetism is observed up to a Curie temperature of 318 K, which is ascribed to the presence of MnAs secondary magnetic phases within the film. It is highly likely that the phase segregation occurs due to the high Mn cell temperature around 890–920 °C, as it is well established that GaMnAs is unstable at such a high temperature. The MnAs precipitate in the samples with x≈4.7–5.5% has a Curie temperature Tc≈318 K, which was characterized from field-cooled and zero-field-cooled magnetization curves. 相似文献
18.
19.
Using first-principles total energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method, we have investigated the structural, electronic and thermodynamic properties of potassium halides (KClxBr1−x, KClxI1−x and KBrxI1−x), with x concentrations varying from 0% up to 100%. The effect of composition on lattice constants, bulk modulus, band gap and dielectric function was investigated. Deviations of the lattice constants from Vegard's law and the bulk modulus from linear concentration dependence (LCD) were observed for the three alloys. The microscopic origins of the gap bowing were explained by using the approach of Zunger and coworkers. On the other hand, the thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing ΔHm as well as the phase diagram. 相似文献