首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutron powder diffraction studies showed that the ordered perovskites Ba2BiSbO6 (BBS) and BaSrBiSbO6 (BSBS) crystallize in a rhombohedral structure with the space group R3¯. The room-temperature lattice parameters are a=6.0351(2) Å; α=60.202(1)° and a=5.9809(2) Å; α=60.045(2)°, respectively. BBS exhibits a dielectric anomaly near room temperature which may be related to structural transition from the R3¯ to low-temperature monoclinic I2/m symmetry. BSBS shows a dielectric anomaly near 723 K which coincides with a phase transition from the rhombohedral to cubic (Fm3¯m) structure. In contrast to BBS, BSBS does not undergo structural transition below room temperature.  相似文献   

2.
Single crystals of pure and potassium iodide (KI)-doped zinc tris-thiourea sulphate (ZTS) were grown from aqueous solutions by the slow evaporation method. The grown crystals were transparent. The lattice parameters of the grown crystals were determined by the single-crystal X-ray diffraction technique. The grown crystals were also characterized by recording the powder X-ray diffraction pattern and by identifying the diffracting planes. The FT-IR spectrum was recorded in the range 400-4500 cm−1. Second harmonic generation (SHG) was confirmed by the Kurtz powder method. The thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) studies reveal that the materials have good thermal stability. Atomic absorption studies confirm the presence of dopant in ZTS crystals. The electrical measurements were made in the frequency range 102-106 Hz and in the temperature range 40-130 °C along a-, b- and c-directions of the grown crystals. The present study shows that the electrical parameters viz. dc conductivity, dielectric constant, dielectric loss factor and ac conductivity increase with increase in temperature. Activation energy values were also determined for the ac conduction process in grown crystals. The dc conductivity, dielectric constant, dielectric loss factor and ac conductivity of KI-doped ZTS crystal were found to be more than those of pure ZTS crystals.  相似文献   

3.
The crystal structure of the new quaternary compound CuTa2InTe4 was studied using X-ray powder diffraction data. The powder pattern refined by the Rietveld method indicates that this material crystallizes in the tetragonal system with space group I-4¯2m (No. 121), Z=2, and unit cell parameters a=6.1963(2) Å, c=12.4164(4) Å, c/a=2.00 and V=476.72(3) Å3. The structural and instrumental refinement of 28 parameters led to Rp=10.4%, Rwp=11.1%, Rexp=6.8% and χ2=2.7 for 96 independent reflections.  相似文献   

4.
The constitutive relation of single crystal copper based on atomistic potential is implemented to capture the nonlinear inter-atomic interactions. Uniaxial loading tests of single crystal copper with inter-atomic potential finite-element model are carried out to determine the corresponding ideal strength using the modified Born stability criteria. Dependence of the ideal strength on the crystallographic orientation is studied, and tension- compression asymmetry in ideal strength is also investigated. The results suggest that asymmetry for yielding strength of nano-materials may result from anisotropic character of crystal instability. Moreover, the results also reveal that the critical resolved shear stress in the direction of slip is not an accurate criterion for the ideal strength since it could not capture the dependence on the loading conditions and hydrostatic stress components for the ideal strength.  相似文献   

5.
The transformation of the so-called matrix structure into persistent slip bands (PSBs) during the fatigue of copper single crystals has been investigated by transmission electron microscopy (TEM). By cyclic pre-deformation a saturated, hard matrix structure was established which is not capable of further hardening. A sudden increase of the applied amplitude of the resolved plastic shear strain initiated the transformation of the matrix structure into PSBs. The number of deformation cycles with enlarged amplitude of resolved plastic shear strain was increased from experiment to experiment in order to obtain crystals with PSBs in consecutive stages of evolution. Surface observations indicated strain localization well before first fragments of the typical ladder-like dislocation pattern of PSBs could be identified in the bulk. From our experiments, we conclude that the transformation from the matrix structure into PSBs very likely starts from the centers of the veins which exhibit small dislocation-poor, soft areas. These areas are enclosed by a harder shell, where a high dislocation density is maintained and which may develop into first dislocation walls. During the evolution of PSBs the frequency distribution of the wall spacings narrows. This indicates that a shift of dislocation walls (1–2 nm/cycle) plays an important rôle in establishing the typical regular ladder-like dislocation pattern of well-developed PSBs.  相似文献   

6.
Design of superhard bulk materials requires predicting their hardness, challenging current theories for material design. By introducing a concept of condensing force (CF), it is shown via ab initio calculations for fcc (Ni, Cu, Al, Ir, Rh, Au, Ag, Pd) and hcp Re crystals that materials with larger CF can have greater hardness. Since the calculation of CF is easy, this method might prove a convenient way to evaluate the hardness of newly designed materials.  相似文献   

7.
A numerical simulation of the composition modification induced in ZnSe by nanosecond irradiation of the KrF excimer laser (λ = 248 nm, τ = 20 ns) has been carried out. Intensive evaporation of components has shown to results in the material surface cooling and forming a nonmonotone temperature profile with maximum temperature in semiconductor volume at the distance of ∼6 nm from the surface. As a result of evaporation and diffusion of components formation of the near-surface layer with nonstoichiometric composition takes place and enrichment of selenium reaches maximum value not on the surface, but in the semiconductor volume.  相似文献   

8.
Numerical simulation of melting and solidification processes induced in CdTe by nanosecond radiation of ruby laser (λ = 694 nm, τ = 20 and 80 ns) and KrF excimer laser (λ = 248 nm, τ = 20 ns) taking into account components diffusion in melt and their evaporation from the surface has been carried out. Cd atoms evaporation has shown to essentially affect the dynamics of phase transitions in the near-surface region. Thus, in the case of the influence of ruby laser irradiation intensive surface cooling results in the formation of nonmonotone temperature profile with maximum temperature in semiconductor volume at the distance of ∼20 nm from the surface. The melt formed under the surface extends both to the surface and to the semiconductor volume as well. As a result of cadmium telluride components evaporation and diffusion in the melt the near-surface region is enriched with tellurium. The obtained melting threshold value of irradiation energy density is in a reasonable agreement with experimental data.  相似文献   

9.
Experimental investigations are reported on mechanisms by which dislocation arrangements of Persistent Slip Bands (PSBs) respond to changes of the deformation temperature. Copper single crystals orientated for single slip were cyclically deformed well into saturation at 300 K at an applied resolved plastic shear-strain amplitude, , such that the plastic strain became localized in PSBs. The spacings of the dislocation walls in these PSBs are about 1.4 m. After the temperature had been lowered to 77 K, cyclic deformation was continued with unchanged . A transformation of the dislocation pattern started. A certain fraction of the PSBs produced at 300 K finally showed a mean wall spacing of about 0.7 m which is typical for PSBs formed at 77 K. The remaining PSBs did not finish the transformation and became obviously inactive. In the state of cyclic saturation reattained at 77 K 50% of the PSBs, which had been formed at 300 K, show the dislocation pattern characteristic of 77 K. It is concluded that the amplitude of the resolved plastic shear strain localized in a PSB, , must be twice as large at 77 K as at 300 K. In an additional series of experiments crystals were cyclically deformed at constant temperatures of 430 K, 300 K, 190 K, and 77 K. In the temperature range covered by these experiments, the amplitude of the saturation flow stress, S, appears to be proportional to the intrinsic amplitude of the PSBs, .  相似文献   

10.
Pulsed laser deposition of NiTi shape memory effect thin films   总被引:1,自引:0,他引:1  
2 O3(100) substrates. We also produced free-standing NiTi films by deposition on KBr substrates and subsequent substrate removal by immersion in water. The presence of the solid-solid phase transformation responsible for the shape memory effect has been demonstrated through temperature-dependent X-ray diffraction and four-probe resistance versus temperature measurements. On cooling the deposited film, the austenite-martensite transformation was measured at around 195 K; on heating the film the reverse transformation was around 250 K. Evidence of the shape-memory effect for free-standing films was obtained in a bending deformation-shape recovery experiment. Received: 31 July 1996/Accepted: 6 January 1997  相似文献   

11.
Heat of formation, elastic property and electronic structure of TiNiPd high-temperature shape memory alloys have been investigated by first-principles calculations using the pseudopotentials plane-wave method. The results show that the heat of formation difference between austenite and martensite plays an important role in the martensitic transformation. The effect of Pd content on the martensitic transformation temperature and transformation type is clarified based on the elastic constants of the B2 phases. High martensitic transformation temperature can be attributed to a low shear resistance C′. Furthermore, the mechanism of the effect of Pd addition on elastic constants is explained on the basis of the electronic structure.  相似文献   

12.
We use dislocation theory and molecular dynamics (MD) simulations to investigate the effect of atom properties on the macroscopic strain rate sensitivity of f cc metals. A method to analyse such effect is proposed. The stress dependence of dislocation velocity is identified as the key of such study and is obtained via 2-D MD simulations on the motion of an individual dislocation in an fcc metal. Combining the simulation results with Orowan's relationship, it is concluded that strain rate sensitivities of fcc metals are mainly dependent on their atomic mass rather than the interatomic potential. The order of strain rate sensitivities of five fcc metals obtained by analysing is consistent with the experimental results available.  相似文献   

13.
Non-congruent LiNbO3 crystals has been used to determine the influence of the intrinsic defect density in the ferroelectric domain inversion mechanism. The poling processes have been carried out either at high temperature or at RT throughout the electric-field-poling technique. It is shown that the coercive field of LiNbO3 crystals is strongly influenced by the intrinsic defect density in the crystals. Moreover it is shown that it is possible to realign the ferroelectric domain structure of near-stoichiometric LiNbO3 crystals to prepare periodic poled structures which allows second harmonic generation at shorter wavelengths than with congruent crystals at a fixed wavelength. Received: 6 July 1999 / Accepted: 24 November 1999 / Published online: 24 March 2000  相似文献   

14.
Based on dislocation theory, we investigate the mechanism of strain rate effect. Strain rate effect and dislocation motion are bridged by Orowan's relationship, and the stress dependence of dislocation velocity is considered as the dynamics relationship of dislocation motion. The mechanism of strain rate effect is then investigated qualitatively by using these two relationships although the kinematics relationship of dislocation motion is absent due to complicated styles of dislocation motion. The process of strain rate effect is interpreted and some details of strain rate effect are adequately discussed. The present analyses agree with the existing experimental results. Based on the analyses, we propose that strain rate criteria rather than stress criteria should be satisfied when a metal is fully yielded at a given strain rate.  相似文献   

15.
The crystal structure of SmFeAs(O0.93F0.07) has been investigated under high pressure (up to ∼9 GPa) by means of synchrotron powder diffraction analysis followed by Rietveld refinement. The bulk modulus was calculated (K0 = 103 GPa) using a 3rd order Birch–Murnaghan equation of state and resulted in quite good agreement with theoretical calculations reported for LaFeAsO. The linear compressibilities βa and βc are 2.11(4) and 4.56(7) × 10−3 GPa−1, respectively.  相似文献   

16.
Using ab initio calculations, we have studied the structurally related compounds Nb2SC and Nb2S2C. In Nb2S2C (space group , prototype Bi2Te3), S atoms are nearest neighbours, while in Nb2SC (space group P63/mmc, prototype Cr2AlC) this is not the case. The calculated equilibrium volume for these two phases deviates by 1.6-3.7% to previously-published experimental data and the bulk modulus-to-c44 ratios obtained are 1.5 and 5.9, respectively. These results indicate a resemblance of Nb2S2C to hexagonal BN and graphite. Furthermore, we have demonstrated that the uniform compression method is adequate for estimating the elastic properties of Nb2SC, a so-called MAX phase. It is our ambition that these calculations will stimulate further experimental research on these compounds.  相似文献   

17.
Single crystals of the amino acid benzoyl glycine (hippuric acid) are irradiated normal to the as-grown surface by highly charged Bi ions with a kinetic energy of 2.38 GeV and a fluence of 1×1010 ions/cm2. The projectiles create circular craters with a mean diameter of 40 (10) nm on the surface of the crystal as observed by scanning force microscopy (SFM). The mean depth amounts to 4 (1) nm, this value being considered as a lower limit due to the finite radius of curvature of the force cantilever tip. Thus, on the average, each single-ion projectile seems to eject about 104 molecules. On the surface of non-irradiated crystals, SFM reveals terraces of a few monolayers in height. In water, it was possible to visualize the lattice periodicity. Terraces were also observed on the irradiated crystal surface in the presence of the craters, indicating that the crystal is still intact at the given dose. Received: 25 May 2000 / Accepted: 26 May 2000 / Published online: 13 July 2000  相似文献   

18.
Using ab initio calculations, we have studied Sc2AC with A=Al, Ga, In and Tl. We show that C 2p and Sc 3d as well as A p and Sc 3d states are hybridized, but the antibonding states in the vicinity of the Fermi level weaken the overall bonding. In terms of the chemical bonding, the influence of the size of the A element is minute. Furthermore, the bulk modulus of the corresponding binary transition metal carbide is not conserved in these phases. Therefore, Sc2AC can be classified as weakly coupled MAX phases according to Sun and co-workers [Z. Sun, D. Music, R. Ahuja, S. Li, J.M. Schneider, Phys. Rev. B 70 (2004) 092102]. It is our ambition that these calculations will stimulate experimental research on these compounds.  相似文献   

19.
The aim of this work is to improve the mechanical properties of AISI 4140 steel substrates by using a TiN[BCN/BN]n/c-BN multilayer system as a protective coating. TiN[BCN/BN]n/c-BN multilayered coatings via reactive r.f. magnetron sputtering technique were grown, systematically varying the length period (Λ) and the number of bilayers (n) because one bilayer (n = 1) represents two different layers (tBCN + tBN), thus the total thickness of the coating and all other growth parameters were maintained constant. The coatings were characterized by Fourier transform infrared spectroscopy showing bands associated with h-BN bonds and c-BN stretching vibrations centered at 1400 cm−1 and 1100 cm−1, respectively. Coating composition and multilayer modulation were studied via secondary ion mass spectroscopy. Atomic force microscopy analysis revealed a reduction in grain size and roughness when the bilayer number (n) increased and the bilayer period decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period (Λ) was 80 nm (n = 25), yielding the relative highest hardness (∼30 GPa) and elastic modulus (230 GPa). The values for the hardness and elastic modulus are 1.5 and 1.7 times greater than the coating with n = 1, respectively. The enhancement effects in multilayered coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain increased hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayered coatings taking into account the thickness reduction at individual single layers that make up the multilayered system. The Hall-Petch model based on dislocation motion within layered and across layer interfaces has been successfully applied to multilayered coatings to explain this hardness enhancement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号