首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of magnetic and electrical phases in La0.8−δCa0.2MnO3 was investigated in terms of La deficiency. We found that the increase of the La deficiency tends to raise the Curie temperature (TC) in La0.8−δCa0.2MnO3. The FM clusters formed in compounds with large La deficiency provide percolation paths above TC. With increasing the La defect, the transport property changes from insulating to metallic state, which is in association with the crossover from a second order to a first order magnetic phase transition in the vicinity of TC.  相似文献   

2.
The La0.8Sr0.2MnO3/ZnO heterostructures with different thicknesses of ZnO films are fabricated by using RF magnetron sputtering technique. The heterojunctions exhibit excellent rectifying properties at 300 K. At low temperatures the temperature dependent junction resistance exhibits a metal-insulator transition like behavior. A magnetic field strongly impacts on electrical characteristics of La0.8Sr0.2MnO3/ZnO p-n junctions, i.e., depressing the junction resistance greatly and driving the metal-insulator transition temperature (TMI) towards higher temperatures. Large magnetoresistance is observed below TMI, and it increases with increasing magnetic field and almost saturates at 5 T, i.e., above −90% at 100 K and 5 T.  相似文献   

3.
The structure and magnetic properties of the melt-spun ribbons of Tb0.27Dy0.73Fex alloy are investigated as a function of various wheel speeds during melt-quenching using a single-roll technique. It is found that Tb0.27Dy0.73Fex alloy is difficult to be fabricated as amorphous state by using the melt-quenching method. X-ray diffractions show that all these ribbons for x=1.7−2.0 are the MgCu2-type phase at the wheel speed of 45 m s−1. For Tb0.27Dy0.73Fex alloy, the high wheel speed is beneficial to eliminate the RFe3 phase and form the perfect MgCu2-type phase. Compared with the bulk of Tb0.27Dy0.73Fe1.95, these ribbons exhibit higher intrinsic coercivity value and their saturation magnetizations increase as well. The magnetostriction of Tb0.27Dy0.73Fe1.95 composite with 4% epoxy resin is 640×10−6 at 900 kA m−1.  相似文献   

4.
The structure and magnetostriction of the (Tb1−xDyx)0.2Pr0.8(Fe0.4Co0.6)1.88C0.05 intermetallic compounds (0≤x≤1) were studied by X-ray diffraction and magnetic measurements. The formation of an approximate single Laves phase with a MgCu2-type cubic structure was observed in this series of compounds. It was found that the Curie temperature and the saturation magnetization of the compounds would decrease with increase in the Dy content up to x=1. The magnetostriction λa (λa=λ-λ) gently rises when x≤0.6, and follows with a precipitous fall when x exceeds 0.6, with the highest value of λa being reached in the compounds with x=0.6. The magnetostriction of all the samples was observed to approach their own saturation in the magnetic fields higher than 4 kOe. This indicates that the addition of a small amount of Dy could effectively improve the low-field magnetostriction of the Tb0.2Pr0.8(Fe0.4Co0.6)1.88C0.05 compounds, which could become a kind of promising magnetostrictive material.  相似文献   

5.
In this work carbonyl iron/La0.6Sr0.4MnO3 composites were prepared to develop super-thin microwave absorbing materials. The complex permittivity, permeability and microwave absorption properties are investigated in the frequency range of 8-12 GHz. An optimal reflection loss of −12.4 dB is reached at 10.5 GHz with a matching thickness of 0.8 mm. The thickness of carbonyl iron/La0.6Sr0.4MnO3 absorber is thinner, compared with conventional carbonyl iron powders with the same absorption properties. The bandwidth with a reflection loss exceeding −7.4 dB is obtained in the whole measured frequency range with the thickness of 0.8 mm. The excellent microwave absorption properties are attributed to a better electromagnetic matching established by the combination of the enhanced dielectric loss and nearly invariable magnetic loss with the addition of La0.6Sr0.4MnO3 nanoparticles in the composites. Our work indicates that carbonyl iron/La0.6Sr0.4MnO3 composites may have an important application in wide-band and super-thin electromagnetic absorbers in the frequency range of 8−12 GHz.  相似文献   

6.
The structure and magnetostriction of Tb0.2Pr0.8(Fe0.4Co0.6)1.93−xCx intermetallic compounds were studied by X-ray diffraction and magnetic measurements. Almost a single cubic Laves phase forms in the alloys for x ≤0.20, and a small amount of C can inhibit the formation of the 1:3 phase. The lattice parameter increases when 0≤x≤0.15, while the Tc and the spontaneous magnetization decreases with increasing x. The lattice parameter decreases slowly when 0.15≤x≤0.30, while the Tc decreases evidently with increasing x. The magnetostriction λa (=λ-λ) is improved at low magnetic fields at room temperature for the compounds with 0.05≤x≤0.10, indicating that these C-containing compounds are promising magnetostrictive materials.  相似文献   

7.
La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应   总被引:8,自引:0,他引:8       下载免费PDF全文
陈伟  钟伟  潘成福  常虹  都有为 《物理学报》2001,50(2):319-323
采用溶胶凝胶法制备了系列La0.8-xCa0.2MnO3多晶样品,用X射线衍射分析确定了样品的钙钛矿结构,用透射电子显微镜观察了样品的形貌及粒径分布情况,用PAR155型振动样品磁强计测量了样品的磁性随外场和温度的变化,确定样品的居里温度并计算了各样品的磁熵变.磁测量及计算结果表明制备的各样品的居里温度在180—260K的范围内且随焙烧温度和La3+离子空位浓度的不同而变化,不同温度焙烧的样品均有较大的磁熵变值,其中1100℃焙烧的La0.77Ca0.2MnO3,多晶样品在240.5K,H=1.0T的外场下的磁熵变达3.76J/kg·K,对实验结果做了定性的分析.该材料具有较高的居里温度和较大的磁熵变,所需外场强度适中,电阻率高,性能稳定,适合做高温磁制冷材料. 关键词: 钙钛矿 居里温度 磁热效应  相似文献   

8.
The polarised absorption and fluorescence spectra of Nd:Gd0.8La0.2VO4 crystal are measured and compared to those of Nd:GdVO4. CW laser properties of diode-pumped Nd:Gd0.8La0.2VO4 crystal operating at fundamental wavelengths of 1.06 and 1.34 μm, as well as when intracavity frequency-doubled to 532 and 670 nm, have been studied. The maximum output powers at 1.06 μm, 1.34 μm, 532 nm and 670 nm are 1.18 W, 671 mW, 206 mW and 42 mW respectively, at a diode-launched pump power of 2.9 W. The threshold pump powers are 80, 267, 7 and 15 mW respectively.  相似文献   

9.
In this work, the technique of electron magnetic resonance (EMR) is used to measure the magnetic resonant spectra of La0.7Sr0.3MnO3 nanoparticles synthesized by sol–gel routes with three different gelation agents (S1: Urea+citric acid; S2: citric acid, and S3: Urea+tri-sodium citrate). The purpose of this study is to investigate the influence of synthesis conditions on the magnetic properties of nanoparticles. Our ESR results show that Curie temperatures of La0.7Sr0.3MnO3 nanoparticles with different gelation agents are slightly different (Tc∼340 to 360 K) and possess both paramagnetic (PM) and ferromagnetic (FM) phases in the temperature below Tc. Besides, a sharp FM–PM transition indicates that the combined agent of Urea+tri-sodium citrate creates a better quality in CMR nanomagnets.  相似文献   

10.
The phase relation of LaFe11.5Si1.5 alloys annealed at different high-temperature from 1223 K (5 h) to 1673 K (0.5 h) has been studied. The powder X-ray diffraction (XRD) patterns show that large amount of 1:13 phase begins to form in the matrix alloy consisting of α-Fe and LaFeSi phases when the annealing temperature is 1423 K. In the temperature range from 1423  to 1523 K, α-Fe and LaFeSi phases rapidly decrease to form 1:13 phase, and LaFeSi phase is rarely observed in the XRD pattern of LaFe11.5Si1.5 alloy annealed at 1523 K. With annealing temperature increasing from 1573  to 1673 K, the LaFeSi phase is detected again in the LaFe11.5Si1.5 alloy, and there is La5Si3 phase when the annealing temperature reaches 1673 K. There almost is no change in the XRD patterns of LaFe11.5Si1.5 alloys annealed at 1523 K for 3-5 h. According to this result, the La0.8Ce0.2Fe11.5−xCoxSi1.5 (0≤×≤0.7) alloys are annealed at 1523 K (3 h). The analysis of XRD patterns shows that La0.8Ce0.2Fe11.5xCoxSi1.5 alloys consist of the NaZn13-type main phase and α-Fe impurity phase. With the increase of Co content from x=0 to 0.7, the Curie temperature TC increases from 180 to 266 K. Because the increase of Co content can weaken the itinerant electron metamagnetic transition, the order of the magnetic transition at TC changes from first to second-order between x=0.3 and 0.5. Although the magnetic entropy change decreases from 34.9 to 6.8 J/kg K with increasing Co concentration at a low magnetic field of 0-2 T, the thermal and magnetic hysteresis loss reduces remarkably, which is very important for the magnetic refrigerant near room temperature.  相似文献   

11.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

12.
La1−xAgxMnO3 perovskites with different doping Ag-content were prepared by the sol–gel method. The electromagnetic characteristics and microwave loss behavior of these ion-doped rare-earth manganites were studied in the 2–18 GHz frequency range. The microstructure and morphology of the samples were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The complex permittivity spectra, the complex permeability spectra and microwave reflection loss were measured by a microwave vector network analyzer system. The XRD patterns show that the crystalline perovskite main phase ABO3 is formed and impurity phases disappear when calcined at 1100 °C, and Ag metal as an impurity phase appears when excessive Ag+ is doped. The SEM image indicates that many of the La0.85Ag0.15MnO3 particles are fiber-like or ellipsoidal. Magnetic loss and dielectric loss coexist and cooperate in microwave attenuation by moderate substitution of Ag+ for La3+. The microwave absorption property of the La0.85Ag0.15MnO3 sample is enhanced with the bandwidth below −10 dB at about 6 GHz and the peak value of reflection loss is near −25.0 dB at the layer thickness of 2 mm.  相似文献   

13.
A new phosphor material, Y1−xTbxCa4O(BO3)3 (0≤x≤1) film was grown on SiO2 substrates by the combinatorial pulsed laser deposition (PLD) method, which enabled us to fabricate continuous composition spread film libraries. Photoluminescence (PL) and PL decay were measured for these film libraries to identify the optimum composition as well as to determine the luminescence mechanism. The film libraries showed strong dependence of luminescence intensities on the chemical composition of Tb ion. The optimum concentration of Tb ions in Y1−xTbxCa4O(BO3)3 was experimentally and theoretically determined to be x=0.2-0.3.  相似文献   

14.
The hydrothermal synthesis and magnetic entropy change for the perovskite manganite La0.5Ca0.3Sr0.2MnO3 have been studied. The La0.5Ca0.3Sr0.2MnO3 can be produced as phase-pure, crystalline powders in one step from solutions of metal salts in aqueous potassium hydroxide solution at a temperature of 513 K in 72 h. Scanning electron microscopy shows that the materials are made up of cuboid-shaped particles in typical dimension of 4.0×2.5×1.6 μm. Heat treatment can improve the magnetocaloric effect for the hydrothermal sample. The maximum magnetic entropy change ΔSM for the as-prepared sample is 0.88 J kg−1 K−1 at 315 K for a magnetic field change of 2.0 T. It increases to 1.52 J kg−1 K−1, near its Curie temperature (317 K) by annealing the sample at 1473 K for 6 h. The hydrothermal synthesis method is a feasible route to prepare high-quality perovskite material for magnetic refrigeration application.  相似文献   

15.
La0.6Sr0.4CoxFe1−xO3−δ (LSCF), La0.6Sr0.4Cu0.2Fe0.8O3−δ, Ba0.5Sr0.4Co0.8Fe0.2O3−δ and LaFeO3−δ nanoparticles were synthesized by a reverse micelle procedure. Controlling the size of the micelles through the water:oil phase ratio enabled synthesis of phase pure perovskite particles with average sizes from 14 nm to 50 nm. Small amounts of an impurity phase, likely cobalt oxide, were detected in the XRD spectrum of high cobalt content samples of LSCF (x = 0.8). La0.6Sr0.4Co0.2Fe0.8O3−δ nanoparticles were utilized to coat the surface of a dense thin-film La0.6Sr0.4Co0.2Fe0.8O3−δ solid oxide fuel cell cathode. The polarization resistance of the nanoparticle coated electrode, measured at open circuit in air at 973 K, was 20% lower than an equivalent un-coated electrode.  相似文献   

16.
Nominal composition of (ZnO)1−x(MnO2)x (0.005≤x≤0.2) ceramics have been prepared by the standard solid-state reaction method in three different sintering atmospheres: Ar, air, and reductive atmosphere. The effect of sintering atmosphere on the electron spin resonance (ESR), negative temperature coefficient of resistivity (NTCR), and photoluminescence (PL) properties of (ZnO)1−x(MnO2)x ceramics has been investigated in detail. The results demonstrate that the sintering atmosphere has significant effects on the ESR signals of (ZnO)1−x(MnO2)x; the NTCR of the samples sintered in air is larger than those sintering in Ar and reductive atmosphere; the deep-level PL related to oxygen vacancy increases when sintered in the reductive atmosphere.  相似文献   

17.
Polycrystalline La0.7Sr0.3MnO3 (LSMO) films were prepared on SiO2/Si (001) substrates by chemical solution deposition technique. Electrical and magnetic properties of LSMO were investigated. A minimum phenomenon in resistivity is found at the low temperature (<50 K) under magnetic fields from 0 T to 3 T. Kondo-like spin dependent scattering, which includes both spin polarization and grain boundary tunneling, was observed in the low-temperature electrical transport for the LSMO polycrystalline films. The temperature-dependent resistivity at low temperatures can be well fitted in the framework of elastic scattering, electron-electron (e-e) interaction, Kondo-like spin dependent scattering, and electron-phonon (e-ph) interaction.  相似文献   

18.
A Sr0.8La0.2Fe11.8Co0.2O19 ferrite film has been prepared on a (0 0 1) sapphire substrate by chemical solution deposition. Structural characteristics indicate that the film is c-axis oriented and single-phase with space group P63/mmc. The grains are regular columnar with diameter between 50 and 100 nm as determined by atomic force microscopy. The sample possesses high saturation magnetization (130 emu/cm3), high coercivity (6.9 kOe), and large squareness ratio (0.9) at room temperature, which makes it a promising recording material.  相似文献   

19.
The layered perovskite type oxides, K2La2Ti3O10 and zinc(Zn)-doped K2La2Ti3O10 were prepared by sol-gel method and were characterized by power X-ray diffraction, UV-vis diffuse reflectance and X-ray photoelectron spectroscopy. The photocatalytic activity for water splitting of the catalyst powders was investigated with I as electron donor under ultraviolet and visible light irradiation respectively. The electronic structure of the powders has been analyzed by the first principles calculation, which reveals the photo responses in the visible region and the improvement of the photocatalytic activity of K2La2Ti3O10. Conclusions were made that zinc(Zn)-doped K2La2Ti3O10 exhibited higher reactivity for hydrogen production. When I was used as electron donor, the optimum doping concentration of zinc(Zn) was found to be 0.015:1 (nZn:nTi). The average hydrogen production rates were 126.6 μmol/(gcat h) under ultraviolet irradiation and 55.5 μmol/(gcat h) under visible light irradiation which were raised by 131% and 251% compared with undoped K2La2Ti3O10 photocatalyst, respectively.  相似文献   

20.
In this paper, nanosized particles of (La0.47Gd0.2)Sr0.33MnO3 perovskite-type oxides were successfully synthesized at a relatively low calcinated temperature at 800 °C for 10 h using amorphous molecular alloy as precursor. X-ray diffraction (XRD) and electron diffraction (ED) revealed that the resulting product is of pure single-phase rhombohedral structure. The Curie temperature TC and magnetic entropy change (MCE) in (La0.47Gd0.2)Sr0.33MnO3 polycrystalline nanoparticles are determined and compared to those of similar systems prepared by the conventional solid-state reaction method. The Curie temperature TC is shifted to 298 k, and a relatively large MCE with a broad peak around Curie temperature is observed in (La0.47Gd0.2)Sr0.33MnO3 polycrystalline particles. These results suggested that this material is a suitable candidate as working substance in magnetic refrigeration near room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号