首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MgO was introduced into low-temperature sintered Z-type hexaferrites in order to improve their high-frequency electromagnetic properties. In the doped samples the major Z-type phase coexists with a small amount of W-type magnetoplumbite phase. The addition of MgO causes a decrease of the average grain size and an increase of the magnetocrystalline anisotropy (K1) and the saturation magnetization (Ms) with the increment of K1 being larger than that of Ms. These factors result in a reduce of the initial permeability. Also, the samples with MgO additive exhibit higher Q-factor and dc resistivity. Furthermore, the introduction of MgO can decrease the dielectric constant and improve the dielectric loss tangent of the samples by reducing the electronic transition in octahedral site (B-site) between Fe2+ and Fe3+ ions.  相似文献   

2.
Nb-doped Z-type hexaferrites (Ba3(Co0.4Zn0.6)2Fe24O41) with composition of Ba3(Co0.4Zn0.6)2Fe24O41+x Nb2O5 (where x=0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.2, 1.6 and 2.0 wt%) were prepared by a solid-state reaction method. The effects of different sintering temperature (Ts) and Nb2O5 content on the sintering behaviors, phase composing, microstructure, and magnetic properties of the samples were investigated. The results from X-ray diffraction and scanning electron microscopy show that as the amount of Nb2O5 additive increases, the major phase changes to Z-phase, Simultaneously, M-phase and a small amount of niobate phase appear. The Nb2O5 additive promotes the grain growth as reaction center at lower sintering temperature (1220 °C), but at higher temperature (1260 °C), niobate phase separated out in grain boundaries as secondary phase will restrain abnormal grain growth, so closed pores in grains are not formed. The Nb2O5 additive can enhance densification, improve initial permeability of hexaferrites by increasing the grain growth of hexaferrite and the displacement of ions in the sintering process due to the aberration and activation of crystal lattice, which is accompanied by the solubility of Nb5+ in the hexaferrites. A relative density of 96%, maximum initial permeability (32–33), minimum coercivity (454–455 A/m) and resonance frequency above 400 MHz were obtained for the sample with 0.8 wt% Nb2O5 sintered at 1260 °C for 6 h.  相似文献   

3.
MnZn ferrites were prepared by conventional oxide ceramic process. The effects of Bi2O3 on microstructure and magnetic properties of MnZn ferrites were investigated by means of characterizing the fracture surface micrograph, composition of grain boundary, magnetic properties and density by scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDS), B-H analyzer and Archimedes method, respectively. The results indicate that Bi2O3 mainly segregates and concentrates in the grain boundary regions, promotes solid-state reaction and grain growth, reduces porosity and enhances density. Optimum addition of Bi2O3 increases the permeability and saturation magnetic induction, meanwhile ensures the well frequency stability of permeability.  相似文献   

4.
Thin Er3+, Yb3+ co-doped Y2O3 films were grown on (1 0 0) YAG substrates by pulsed laser deposition. Ceramic targets having different active ion concentration were used for ablation. The influence of the rare-earth content and oxygen pressure applied during the deposition on the structural, morphological and optical properties of the films were investigated. The films deposited at the lower pressure, 1 Pa, and at 1/10 Er to Yb doping ratio are highly textured along the (1 1 1) direction of the Y2O3 cubic phase. In addition to the crystalline structure, these films possess smoother surface compared to those prepared at the higher pressure, 10 Pa. All other films are polycrystalline, consisting of cubic and monoclinic phases of Y2O3. The rougher surface of the films produced at the higher-pressure leads to higher scattering losses and different behavior of the reflectivity spectra. Optical anisotropy in the films of less than 0.004 was measured regardless of the monoclinic structure obtained. Waveguide losses of about 1 dB/cm at 633 nm were obtained for the films produced at the lower oxygen pressure.  相似文献   

5.
Y2O3:Eu3+ nanocrystals were prepared by combustion synthesis. The particle size estimated by X-ray powder diffraction (XRD) was about 10 nm. A blue-shift of the charge-transfer (CT) band in excitation spectra was observed in Y2O3:Eu3+ nanocrystals compared with bulk Y2O3:Eu3+. The electronic structure of Y2O3 is calculated by density functional method and exchange and correlation have been treated by the generalized gradient approximation (GGA) within the scheme due to Perdew-Burke-Ernzerhof (PBE). The calculated results show that the energy centroid of 5d orbital in nanocrystal has increasing trend compared with that in the bulk material. The bond length and bond covalency are calculated by chemical bond theory. The bond lengths of Y2O3:Eu3+ nanocrystal are shorter than those of the bulk counterpart and the bond covalency of Y2O3:Eu3+ nanocrystal also has an increasing trend. By combining centroid shift and crystal-field splitting, the blue-shift of the CT band is interpreted.  相似文献   

6.
Europium-doped yttrium oxide phosphors were obtained by firing precursors prepared by urea precipitation in ethanol and ethylenediamine. The precipitation in non-aqueous solution was carried out in an autoclave at 150°C to allow the decomposition of urea. The photoluminescent intensities of the phosphors prepared in ethanol and ethylenediamine increased by about 30% compared to that of the phosphor prepared by the conventional urea homogeneous precipitation in aqueous solution. Amorphous carbonates and amorphous hydroxides/carbonates mixtures were identified as precursors from ethanol and ethylenediamine, respectively. The morphology and particle size were studied by SEM and dynamic laser scattering method.  相似文献   

7.
Crystalline Y2O3:Eu is of paramount significance in rare earth materials and research on luminescence spectra. In this work, the nanocrystalline Y2O3:Eu was coated with silica by a facile solid state reaction method at room temperature. The transmission electron microscope (TEM) photographs showed that the prepared Y2O3:Eu particle is polycrystalline with the size of 20 nm, the size of silica-coated particle is about 25 nm. The XPS spectra indicated that the silica layer is likely to interact with Y2O3:Eu by a Si-O-Y chemical bond. The luminescence spectra showed that the intensity of ground samples is lower than that of unground ones, the intensity of silica-coated phosphors is higher than that of the ground samples, while almost the same as that of the unground ones. Therefore, the silica coating decreases the surface defects of nanoparticles of the nanocrystalline Y2O3:Eu, thus increasing their luminescent intensity.  相似文献   

8.
Y2O3 transparent ceramics with different Nd concentration (0.1-7.0at%) were fabricated using ZrO2 as additive. All the samples exhibit high transparency over a broad spectral region. The elements (Y, O and Nd) are uniformly distributed in the ceramic body, and the average grain size increases with Nd content. Based on the absorption spectrum, the Judd-Ofelt intensity parameters are calculated (Ω2=4.364×10−20 cm2, Ω4=3.609×10−20 cm2 and Ω6=2.919×10−20 cm2). The absorption coefficients increase linearly with Nd3+ doping concentration. The absorption cross-section at 804 nm and stimulated emission cross-section at 1078 nm are calculated to be 1.54×10−20 and 7.24×10−20 cm2, respectively. All the emission bands exhibit the highest emission intensities with 1.0at% Nd3+ ion content, while the lifetime decreases dramatically from 321.5 μs (0.1at% Nd) to 17.9 μs (7.0at% Nd). According to the emission spectra and measured lifetime, the optimum doping concentration of Nd3+ ion in Y2O3 transparent ceramic might be around 1.0at%.  相似文献   

9.
Red-emitting Y2O3:Eu3+ and green-emitting Y2O3:Tb3+ and Y2O3:Eu3+, Tb3+ nanorods were synthesized by hydrothermal method. Their structure and micromorphology have been analyzed by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The photoluminescence (PL) property of Y2O3:Eu3+,Tb3+ phosphor was investigated. In the same host (Y2O3), upon excitation with ultraviolet (UV) irradiation, it is shown that there are strong emissions at around 610 and 545 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+ and 5D4-7F5 transition of Tb3+, respectively. Different qualities of Eu3+and Tb3+ ions are induced into the Y2O3 lattice. From the excitation spectrum, we speculate that there exists energy transfer from Tb3+ to Eu3+ ions .The emission color of powders reveals regular change in the separation of light emission. These powders can meet with the request of optical display material for different colors or can be potentially used as labels for biological molecules.  相似文献   

10.
Physical and electrical properties of sputtered deposited Y2O3 films on NH4OH treated n-GaAs substrate are investigated. The as-deposited films and interfacial layer formation have been analyzed by using X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). It is found that directly deposited Y2O3 on n-GaAs exhibits excellent electrical properties with low frequency dispersion (<5%), hysteresis voltage (0.24 V), and interface trap density (3 × 1012 eV−1 cm−2). The results show that the deposition of Y2O3 on n-GaAs can be an effective way to improve the interface quality by the suppression on native oxides formation, especially arsenic oxide which causes Fermi level pinning at high-k/GaAs interface. The Al/Y2O3/n-GaAs stack with an equivalent oxide thickness (EOT) of 2.1 nm shows a leakage current density of 3.6 × 10−6 A cm−2 at a VFB of 1 V. While the low-field leakage current conduction mechanism has been found to be dominated by the Schottky emission, Poole-Frenkel emission takes over at high electric fields. The energy band alignment of Y2O3 films on n-GaAs substrate is extracted from detailed XPS measurements. The valence and conduction band offsets at Y2O3/n-GaAs interfaces are found to be 2.14 and 2.21 eV, respectively.  相似文献   

11.
NiCuZn ferrites with different contents of CaO-B2O3-SiO2 glasses were synthesized by a conventional ceramic technology and sintered at 1050 °C. It was found that the addition of CaO-B2O3-SiO2 influenced the magnetic and dielectric properties of the ferrites. The saturation magnetization increased at first and reached its maximum with the sample of 2 wt% CaO-B2O3-SiO2, and then decreased. The initial permeability decreased with the content of CaO-B2O3-SiO2 but the cut-off frequency increased. The quality factor decreased first and then increased; the maximum quality factor was obtained in the sample with 3 wt% CaO-B2O3-SiO2. With increasing content of CaO-B2O3-SiO2, the permittivity increased sharply. The possible reasons responsible for these changes are explained.  相似文献   

12.
Nanocrystalline Y2Si2O7:Eu phosphor with an average size about 60 nm is easily prepared using silica aerogel as raw material under ultrasonic irradiation and annealing temperature at 300-600 °C and this nanocrystalline decomposes into Y2O3:Eu and silica by heat treatment at 700-900 °C. The excitation broad band centered at 283 and 254 nm results from Eu3+ substituting for Y3+ in Y2Si2O7 and Y2O3/SiO2, respectively. Compared with Y2O3:Eu/SiO2 crystalline, the PL excitation and emission peaks of Y2Si2O7:Eu nanocrystalline red-shift and lead to the enhance of its luminescence intensity due to the different chemical surroundings of Eu3+ in above nanocrystallines. The decrease of PL intensity may be ascribed to quenching effect resulting from more defects in Y2O3:Eu/SiO2 crystalline.  相似文献   

13.
Eu2O3-doped yttrium oxide (3 mol%) [Y2O3:Eu(3 mol%)] with wire-like and near-spherical morphologies were prepared by a solvothermal treatment using water, ethanol, ethylene glycol and glycerol as reaction media followed by calcination. The powders prepared in water and ethanol possessed wire structure, where the powder treated in water showed high aspect ratio and that in ethanol showed low aspect ratio. The powders prepared in ethylene glycol and glycerol possessed well-dispersed near-spherical powders, which showed almost the same level of photoluminescence emission intensity as that of submicron particles prepared without solvothermal treatment.  相似文献   

14.
The effects of Tb doping on the photoluminescence (PL) of Y2O3:Tb nanophosphors have been investigated. Nanophosphors were prepared by the glycine-nitrate solution combustion technique using yttria and terbia powders as precursors. PL excitation spectra at room temperature consist of two overlapping bands centered at 277 and 304 nm, whereas emission spectra comprise several groups of lines corresponding to the 5D47FJ (J=1-6) 4f electronic transitions of the Tb+3 ions. A direct comparison of nanophosphor and bulk concentration-quenching curves was obtained by annealing the nanophosphor powder and converting it to bulk material without altering the Tb concentration. The peak in the nanophosphor concentration-quenching curve occurs at a concentration ∼3 times higher than that of the bulk.  相似文献   

15.
In this paper, Y2O3 powder phosphors without metal activators were successfully prepared by the sol-gel method. The obtained sample shows an intense bluish-white emission (ranging from 350 to 600 nm, centered at 416 nm) under a wide range of UV light excitation (235-400 nm). The chromaticity coordinates of the sample are x=0.159, y=0.097, and the quantum yield is as high as 64.6%, which is a high value among the phosphor family without metal activators. The luminescent mechanisms have been ascribed to the carbon impurities in the Y2O3 host.  相似文献   

16.
To investigate the upconversion emission,this paper synthesizes Tm3+ and Yb3+ codoped Y2O3 nanoparticles,and then coats them with TiO2 shells for different coating times.The spectral results of TiO2 coated nanoparticles indicate that upconversion emission intensities have respectively been enhanced 3.2,5.4,and 2.2 times for coating times of 30,60 and 90 min at an excitation power density of 3.21×102 W.cm 2,in comparison with the emission intensity of non-coated nanoparticles.Therefore it can be concluded that the intense upconversion emission of Y2O3:Tm3+,Yb3+ nanoparticles can be achieved by coating the particle surfaces with a shell of specific thickness.  相似文献   

17.
MnZn ferrites with the chemical formula Mn0.68Zn0.25Fe2.07O4 have been prepared by the conventional ceramic technique. Toroidal cores were sintered at 1350 °C for 4 h in N2/O2 atmosphere with 4% oxygen. Then the influence of Ta2O5 addition on the microstructure and temperature dependence of magnetic properties of MnZn ferrites was investigated by characterizing the fracture surface micrograph and measuring the magnetic properties over a temperature ranging from 25 to 120 °C. The results show that, when the Ta2O5 concentration is not more than 0.04wt%, the grain size has a slight increase with the increase of Ta2O5 concentration, the temperature of secondary maximum peak in the curve of initial permeability versus temperature and the lowest power loss shift to lower temperature. However, excessive Ta2O5 concentration (>0.04wt%) results in the exaggerated grain growth and porosity increase, which make the initial permeability and saturation magnetic flux density decrease and the power loss increase at room temperature. Furthermore, the temperature of secondary maximum peak in the curve of initial permeability versus temperature and the lowest power loss shift to about 100 °C.  相似文献   

18.
Y2O3 thin films were deposited by ion beam assisted deposition (IBAD) and the effects of fabrication parameters such as substrate temperature and ion energy on the structure, optical and electrical properties of the films were investigated. The results show that the deposited Y2O3 films had less optical absorption, larger refractive index, and better film crystallinity with the increase of substrate temperature or ion energy. The as-deposited Y2O3 films without ion-beam bombardment had larger relative dielectric constant (?r) and the ?r decreased with time even over by 40%, while the ?r of films prepared with high ion energy had less changes, only less than 3%. Also, with the increase of ion energy, the electrical breakdown strength and the figure of merit increased.  相似文献   

19.
In this work, the complete matrix of optical spectral levels in trigonal symmetry of 3d2 (3d8) ions are established on basis of strong field coupling mechanism by using two spin–orbit coupling parameters model. The contribution of the spin–orbit coupling of ligand to the optical spectra has been included in these formulas. As an application, the optical spectra of Cr4+ in Y2Ti2O7 and Y2Sn2O7 have been studied by the complete diagonalization (energy matrix) method. The covalent effect has been studied and the difficulty about Dq parameter in explanation of optical spectra of Cr-doped Y2Ti2O7 and Y2Sn2O7 is removed. The theoretical results are in good agreement with observed data.  相似文献   

20.
激光吸收铒掺杂上转换材料的光谱特性实验分析   总被引:3,自引:0,他引:3       下载免费PDF全文
张拴勤  石云龙  卢言利 《物理学报》2009,58(4):2768-2771
采用湿化学法制备了铒掺杂氧化钇上转换纳米粉体材料.研究了不同掺杂浓度、掺杂元素种类对材料显微结构、物相组成和光谱特性的影响.结果表明,通过控制掺杂元素的种类、掺杂浓度可以实现对光谱性能(包括光谱反射系数和上转换光谱)的调控.实验表明,该材料对106 μm激光具有较好的吸收性能. 关键词: 铒掺杂氧化钇纳米粉体 上转换材料 激光与红外复合隐身 光谱反射系数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号