首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the room-temperature ferromagnetism in the (Ga,Mn)N films grown on n-type GaN templates by plasma-enhanced molecular beam epitaxy for semiconductor spintronic device applications. Despite of the possible interface effects between the (Ga,Mn)N layers and n-type GaN templates, the (Ga,Mn)N films were found to exhibit the ferromagnetic ordering above room temperature. The magnetic force microscopy identified the magnetic domains with the different magnetic orientations at room temperature, indicating the existence of the ferromagnetic long-range ordering. In Raman spectra, an additional peak at 578 cm−1 was observed, which is attributed to the local vibration of substitutional Mn in the (Ga,Mn)N lattice. Therefore, it is believed that the ferromagnetic ordering in (Ga,Mn)N is due to the carrier-mediated Ruderman-Kittle-Kasuya-Yosida interaction.  相似文献   

2.
Co-doped TiO2 films were fabricated under different conditions using reactive facing-target magnetron sputtering. Co doping improves the transformation of TiO2 from anatase phase to rutile phase. The chemical valence of doped Co in the films is +2. All the films are ferromagnetic with a Curie temperature above 340 K. The average room-temperature moment per Co of the Co-doped TiO2 films fabricated at 1.86 Pa decreases from 0.74 μB at x=0.03 to 0.02 μB at x=0.312, and decreases from 0.54 to 0.04 μB as x increases from 0.026 to 0.169 for the Co-doped TiO2 films fabricated at 0.27 Pa. The ferromagnetism originates from the oxygen vacancies created by Co2+ dopants at Ti4+ cations. The optical band gaps value (Eg) of the Co-doped TiO2 films fabricated at 1.86 Pa decreases linearly from 3.35 to 2.62 eV with the increasing x from 0 to 0.312. For the Co-doped TiO2 films fabricated at 1.86 Pa, the Eg decreases linearly from 3.26 to 2.53 eV with increasing x from 0 to 0.350.  相似文献   

3.
Transparent pure and Cu-doped (2.5, 5 and 10 at.%) anatase TiO2 thin films were grown by pulsed laser deposition technique on LaAlO3 substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO2. The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to Cu substitutionally replacing cations in TiO2.  相似文献   

4.
Polycrystalline Sn1−xMnxO2 (0≤x≤0.05) diluted magnetic semiconductors were prepared by solid-state reaction method and their structural and magnetic properties had been investigated systematically. The three Mn-doped samples (x=0.01, 0.03, 0.05) undergo paramagnetic to ferromagnetic phase transitions upon cooling, but their Curie temperatures are far lower than room temperature. The magnetization cannot be attributed to any identified impurity phase. It is also found that the magnetization increases with increasing Mn doping, while the ratio of the Mn ions contributing to ferromagnetic ordering to the total Mn ions decreases.  相似文献   

5.
Nanocrystalline CuFe2O4 and CuFe2O4/xSnO2 nanocomposites (x=0, 1, 5 wt%) have been successfully synthesized by one-pot reaction of urea-nitrate combustion method. The transmission electron microscope study reveals that the particle size of the as synthesized CuFe2O4 and CuFe2O4/5 wt%SnO2 are 10 and 20 nm, respectively. The SnO2 coating on the nanocrystalline CuFe2O4 was confirmed from HRTEM studies. The resultant products were sintered at 1100 °C and characterized by XRD and SQUID for compound formation and magnetic studies, respectively. The X-ray diffraction pattern shows the well-defined sharp peak that confirms the phase pure compound formation of tetragonal CuFe2O4. The zero field cooled (ZFC) and field cooled (FC) magnetization was performed using SQUID magnetometer from 2 to 350 K and the magnetic hysteresis measurement was carried out to study the magnetic properties of nanocomposites.  相似文献   

6.
First-principles calculations are carried out in order to find the ferromagnetism dependence on the number of holes substituted for Sn sites. The results show that strong localization of defect states of the p bands of the oxygen atoms near the dopants favors high-spin states and local moment formation. These states appear to be ferromagnetically coupled with a rather long-range magnetic interaction, resulting in a half-metallic ferromagnetic ground state for the whole systems. Analysis of the total energies indicates that the induced well-confined ferromagnetism in the oxygen p orbitals due to hole doping is quite possible and easily controlled in these systems, which indicate a new way to develop a half-metallic ferromagnet in nonmagnetic d0 oxides.  相似文献   

7.
Transparent pure and Fe-doped SnO2 thin films were grown by pulsed laser deposition technique on LaAlO3 substrates. X-ray diffraction shows that the films are polycrystalline and have the rutile structure. Surprisingly, the pure film presents magnetic-like behavior at room temperature with a saturated magnetization of almost one-third of the doped film (∼3.6 and 11.3 emu/g, respectively) and its magnetization could not be attributed to any impurity phase. Taking into account the magnetic moment measured in the pure film, the effective contribution of the impurity in the doped one can be inferred to be ∼2 μB per Fe atom. A large magnetic moment was also predicted by an ab initio calculation in the doped system, which increases if an oxygen vacancy is present near the Fe impurity.  相似文献   

8.
This paper reports on the influence of the sintering temperature and atmosphere and transition-metal doping on the magnetic properties of nanocrystalline and bulk In2O3. Undoped nanocrystalline In2O3 is diamagnetic whatever the sintering temperature and atmosphere. All single-phase transition-metal-doped In2O3 samples are paramagnetic, with a paramagnetic effective moment originating from weakly interacting transition metal ions. No trace of ferromagnetism has been detected even with samples sintered under argon, except extrinsic ferromagnetism for samples with magnetic dopant concentrations exceeding the solubility limit.  相似文献   

9.
Epitaxial thin films of CaRu1−xMxO3 (M=Ti, Mn) were fabricated on a (0 0 1)-SrTiO3 substrate by spin-coat method using organometallic solutions (metal alkoxides). Results of X-ray diffraction and transmission electron microscopy indicate that the epitaxial films were grown pseudomorphically so as to align the [0 0 l] axis of the CaRu1−xMxO3 films perpendicular to the (0 0 1) plane of the SrTiO3 substrate. Ferromagnetism and metal-insulator transition are induced by the substitution of transition metal ions. The occurrence of ferromagnetism was explained qualitatively assuming a TiRu6 cluster model for CaRu1−xTixO3 film and a mixed valence model for CaRu1−xMnxO3 film. Ferromagnetism was also observed for layered CaRuO3/CaMnO3 film and CaRuO3/CaMnO3/CaRuO3/CaMnO3 multilayer film and the magnetism was explained by an interfacial exchange interaction model with magnetic Mn3+, Mn4+, and Ru5+ ions.  相似文献   

10.
We carried out the first observation of the intermediate state (IS) in the region of metamagnetic phase transition (MPT) in ErFeO3: an external magnetic field Hc (H=0–4 kOe), the temperature range 2.15–1.6 K. The ranges of the IS existence and the domain structure (DS) features were determined. Likely mechanisms of the IS thermodynamic stabilization and conditions for its visualization in ErFeO3-plates with various crystallographic orientations were analyzed. The thermodynamic model of IS was offered: the intermediate state was stabilized by the mechanical stress that accompanies MPT. Excellent agreement with experiment was achieved.  相似文献   

11.
Room-temperature ferromagnetism (RTFM) is investigated in the polycrystalline bulk (ZnO)0.98(MnO2)0.02 samples prepared by a modified solid-state sintering route. Successive sintering of a sample was carried out in air at different temperatures in the range of 400-1000 °C. The study of magnetization and phase-investigation in the sample was carried out after each sintering step. The progressive suppression of impurities and the consequent reduction in RTFM is clearly observed in the samples with increase in the sintering temperature up to 800 °C. The subsequent successive sintering of the (ZnO)0.98(MnO2)0.02 sample up to 1000 °C yields fully paramagnetic sample exhibiting wurtzite structure. The studies support the conjecture (Kundaliya et al., Nat. Mater. 3 (2004) 709 [18]) that RTFM in this system has an origin related to a randomly distributed impurity phase produced by local dissolution of ZnO and MnO2.  相似文献   

12.
In this work we present the results of comparative XPS and PYS studies of electronic properties of the space charge layer of the L-CVD SnO2 thin films after air exposure and subsequent UHV annealing at 400 °C, with a special emphasis on the interface Fermi level position.From the centre of gravity of binding energy of the main XPS Sn 3d5/2 line the interface Fermi level position EF − Ev in the band gap has been determined. It was in a good correlation with the value estimated from the offset of valence band region of the XPS spectrum, as well as from the photoemission yield spectroscopy (PYS) measurements. Moreover, from the valence band region of the XPS spectrum and PYS spectrum two different types of filled electronic band gap states of the L-CVD SnO2 thin films have been derived, located at 6 and 3 eV with respect to the Fermi level.  相似文献   

13.
We report on the ferromagnetic characteristics of Zn1−xMnxO films (x=0.1-0.3) prepared by the sol-gel method on silicon substrates using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD) and superconducting quantum interference device (SQUID) magnetometry at various temperatures. Magnetic measurement show that the Curie temperature (TC) and the coercive field (HC) were ∼39 K and ∼2100 Oe for the film of x=0.2, respectively. EDS and TEM measurements indicate that Mn content at the interface is significantly higher than that at the center of the Zn0.8Mn0.2O film showing the ratio, Zn:Mn:O≅1:12:15. This experimental evidence suggests that ferromagnetic precipitates containing manganese oxide may be responsible for the observed ferromagnetic behavior of the film.  相似文献   

14.
The surface and interface morphology and magnetization characteristics of Co70Fe30 thin films deposited on bare glass and p-Si/SiO2 substrates and on conjugated polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) thin films on such substrates have been studied by atomic force microscopy and magneto-optic Kerr effect. It was found that the average absolute magnitude of the coercive field of Co70Fe30 correlates with the roughness of the underlayer prior to Co70Fe30 deposition. P3HT deposited on p-Si/SiO2 substrates possesses an increased surface roughness as compared to the p-Si/SiO2 surface, but displays a decreased surface roughness as compared to the one of a bare glass substrate.  相似文献   

15.
The SiNx (20 nm)/Tb30Co70 (90 nm)/SiNx (5 nm)/Co (3–37 nm)/SiNx (10 nm)/Si multilayer films are deposited on naturally oxidized Si wafer by magnetron sputtering. The saturation magnetization (Ms) of the multilayer films is increased with the thickness of high Ms ferromagnetic Co layer. The perpendicular coercivity (HcHc) value is increased with Co layer thickness as the thickness of the Co layer is lower than 15 nm and then decreases drastically when the thickness of the Co layer further increased. The increase of the HcHc value is owing to the interlayer exchange effect [Li Zhang, Physica B 390 (2007) 373] between TbCo and Co layers. Co under-layer with in-plane magnetic anisotropy would pin the magnetic moment of the TbCo layer near by the Co layer and cause the value of HcHc to increase. However, as the Co layer is thicker than a critical thickness, the HcHc value of the multilayer film would decrease. Therefore, the Co layer with in-plane magnetic anisotropy and soft magnetic properties is expected to dominate the magnetic properties of the multilayer films.  相似文献   

16.
The effects of Co dopants and oxygen vacancies on the electronic structure and magnetic properties of the Co-doped SnO2 are studied by the first-principle calculations in full-potential linearized augmented plane wave formalism within generalized gradient approximations. The Co atoms favorably substitute on neighboring sites of the metal sublattice. Without oxygen vacancies, the Co atoms are at low spin state independent of concentration and distribution of Co atoms, and only the magnetic coupling between nearest-neighbor Co atoms is ferromagnetic through direct exchange and super-exchange interaction. Oxygen vacancies tend to locate near the Co atoms. Their presence strongly increases the local magnetic moments of Co atoms, which depend sensitively on the concentration and distribution of Co atoms. Moreover, oxygen vacancies can induce the long-range ferromagnetic coupling between well-separated Co atoms through the spin-split impurity band exchange mechanism. Thus the room temperature ferromagnetism observed experimentally in the Co-doped SnO2 may originate from the combination of short-range direct exchange and super-exchange interaction and the long-range spin-split impurity band exchange model.  相似文献   

17.
We report the optical and magnetic properties of laser-deposited Zn1−xCoxO (x=0.06-0.3) thin films with no intentional electrical carrier doping. The analysis of the high-temperature magnetization data provides an unambiguous evidence that antiferromagnetic superexchange interaction is the dominant mechanism of the exchange coupling between Co ions in Zn1−xCoxO alloy, yielding the value of the effective exchange integral J1/kB to be about −27 K. The low-temperature magnetization data reveals a spin glass transition in Zn1−xCoxO alloy for the Co content x>0.15, giving the value of the spin freezing temperature Tf to be ∼8 and ∼12 K for x=0.2 and 0.25, respectively. Optical spectra analysis shows a linear increase of the band gap Eg with the increase of the Co content following Eg=3.231+1.144x eV.  相似文献   

18.
A density functional study is performed to investigate the magnetism induced by the nonmagnetic impurity substitution for the cation in SnO2. The calculated results show that the K impurity substitution leads to a robust magnetism in SnO2, and the induced magnetic moments are mainly attributed to the first shell of oxygen atoms surrounding the impurity atom. Meanwhile, no magnetism is observed in SnO2 doped with Ca which implies a decreasing tendency of induced magnetic moments for Sn substituted by vacancy, K, and Ca. It is also demonstrated that the magnetic coupling constant oscillates as a function of K-K separation distance, and the Curie temperature above room temperature can be obtained in K-doped SnO2.  相似文献   

19.
Ni80Fe20/SiO2/Cu composite wires of Cu core 60 μm in diameter and coated with layers of SiO2 and Ni80Fe20 were prepared by RF magnetron sputtering. The influences of the insulator layer thickness, the measurement mode and the magnitude of the driving current on the giant magneto-impedance (GMI) effect were investigated. The results showed that there was an optimum thickness of the insulator layer and the driving current can influence the shape of the MI curve. Resonance enhancement of the GMI was found in the new measurement mode. The results are discussed by taking account of the electromagnetic interactions.  相似文献   

20.
Spintronics, in which both the spin and charge of electrons are used for logic and memory operations, promises to revolutionize the current information technology. Just as silicon supports microelectronics, diluted magnetic semiconductors (DMSs) will be the platform of spintronics. Ideal DMSs should maintain ferromagnetic and semiconducting properties at operating temperatures to realize the spintronic functions. Although many high-temperature Curie temperature DMSs have been reported, the origin of ferromagnetism remains controversial. Currently, this is a major obstacle to the development of spintronic devices. The solution to this problem depends on a more complete understanding of DMS microstructure, especially the distribution of doped magnetic ions at atomic resolution and any defects introduced. Therefore, an analysis technique is required, possessing both high spatial and elemental resolutions, which is beyond the capability of conventional techniques, such as electron microscopy. However, atom probe tomography (APT), which recently has been successfully applied to nanoscale characterization of structural materials, has the potential to provide the unique combination of near atomic spatial and elemental resolutions needed for such an investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号