首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An extremely high-beta (over 85%) self-organized field-reversed configuration (FRC) with a spherical-torus- (ST-)like core is produced in the translation, confinement, and sustainment experiment by highly super-Alfvénic translation of a spheromaklike plasmoid. Substantial flux conversion from toroidal into poloidal occurs during the capture process, resulting in the ST-like core. This plasma state exhibits a remarkable stabilizing property for the ubiquitous centrifugally driven interchange modes present in theta-pinch formed FRCs. This is explained, for the first time, by a simple model taking into account magnetic shear and centrifugal effects. The FRC-ST configuration has up to 4 times improvement in flux confinement times over the scaling of conventional theta-pinch formed FRCs and, thus, a significant improvement in the resistivity and transport.  相似文献   

2.
Evidence of relaxation has appeared, for the first time, in the extremely high-beta, steady-state field-reversed configuration plasma states driven by rotating magnetic fields (RMF) in the translation, confinement, and sustainment experiment. The plasma self-organizes into a near-force-free state in the vicinity of the magnetic axis, with significant improvement in confinement. Associated with this change in magnetic topology is the appearance of an axial RMF component; this would, in turn, generate a current drive in the poloidal direction, thus sustaining the magnetic helicity. A newly developed two-dimensional "equilibrium-lite" model is employed to analyze the magnetic properties of the final high-confinement state, and shows a large q and a significant magnetic shear in the core.  相似文献   

3.
Oscillating-field current drive (OFCD) is a steady-state magnetic helicity injection method to drive net toroidal current in a plasma by applying oscillating poloidal and toroidal loop voltages. OFCD is added to standard toroidal induction to produce about 10% of the total current in the Madison symmetric torus. The dependence of the added current on the phase between the two applied voltages is measured. Maximum current does not occur at the phase of the maximum helicity injection rate. Effects of OFCD on magnetic fluctuations and dissipated power are shown.  相似文献   

4.
The present work is intended to gain a fruitful insight into the understanding of the formations of magneto-vortex configurations and their role in the physical processes of mutual exchange of energies associated with fluid’s motion and the magnetic fields in an axisymmetric stationary hydromagnetic system subject to strong gravitational field (e.g., neutron star/magnetar). It is found that the vorticity flux vector field associated with vorticity 2-form is a linear combination of fluid’s vorticity vector and of magnetic vorticity vector. The vorticity flux vector obeys Helmholtz’s flux conservation. The energy equation associated with the vorticity flux vector field is deduced. It is shown that the mechanical rotation of vorticity flux surfaces contributes to the formation of vorticity flux vector field. The dynamo action for the generation of toroidal components of vorticity flux vector field is described in the presence of meridional circulations. It is shown that the stretching of twisting magnetic lines due to differential rotation leads to the breakdown of gravitational isorotation in the absence of meridional circulations. An explicit expression consists of rotation of vorticity flux surface, energy and angular momentum per baryon for the fluid-magnetic helicity current vector is obtained. The conservation of fluid-magnetic helicity is demonstrated. It is found that the fluid-magnetic helicity displays the energy spectrum arising due to the interaction between the mechanical rotation of vorticity flux surfaces and the fluid’s motion obeying Euler’s equations. The dissipation of a linear combination of modified fluid helicity and magnetic twist is shown to occur due to coupled effect of frame dragging and meridional circulation. It is found that the growing twist of magnetic lines causes the dissipation of modified fluid helicity in the absence of meridional circulations.  相似文献   

5.
张澄 《计算物理》2000,17(4):347-354
磁螺度注入是一种国际上正处于探索性研究阶段的极富吸收力的电汉驱动方案,尤其对于球环堆芯更具有至和关重要的意义。对磁螺度注入电流驱动实验进行平衡反演工作,将实验数据进行理论分析研究,拟合所有的测量数据以确立实际的等离子体位形,平衡的磁拓扑结构以及环向电流的空间分布,从而确定闭合橛面区的驱动电流大小以及等离子体的性质,计算结果表明等离子体具有托卡马克型q分布,环向电汉分布呈中空形,磁面结构为有三角形变  相似文献   

6.
The first sustainment of toroidal plasma current of 50 kA at up to 3 times the injected currents, added in quadrature, using steady inductive helicity injection is described. Separatrix currents-currents not linking the helicity injectors-are sustained up to 40 kA. Decreases in the n=1 toroidal mode of the poloidal magnetic field at higher current amplifications indicate more quiescent, direct toroidal current drive. Results are achieved in HIT-SI (with a spheromak of major radius 0.3 m) during deuterium operations immediately after helium operation. These results represent a breakthrough in the development of this new current drive method for magnetic confinement fusion.  相似文献   

7.
The magnetic field structure in a domain surrounded by a closed toroidal magnetic surface is analyzed. It is shown that ergodization of magnetic field lines is possible even in a regular field configuration (with nonvanishing toroidal component). A unified approach is used to describe magnetic fields with nested toroidal (possibly asymmetric) flux surfaces, magnetic islands, and ergodic field lines.  相似文献   

8.
The toroidal current emerging after the injection of a plasmoid through the magnetic shell of the Trimyx-3M (microwave) multipole trap is measured using the Rogowski loop. This current is due to diamagnetism of the plasma. The relation between the diamagnetic current and the maximal plasma pressure produced at the magnetic field separatrix is obtained. It is shown hence that magnetic measurements in a multi-pole trap for a known concentration make it possible to determine the plasma temperature in the trap and the energy confinement time.  相似文献   

9.
A spheromak is formed for the first time using a new steady state inductive helicity injection method. Using two inductive injectors with odd symmetry and oscillating at 5.8 kHz, a steady state spheromak with even symmetry is formed and sustained through nonlinear relaxation. A spheromak with about 13 kA of toroidal current is formed and sustained using about 3 MW of power. This is a much lower power threshold for spheromak production than required for electrode-based helicity injection. Internal magnetic probe data, including oscillations driven by the injectors, agree with the plasma being in the Taylor state. The agreement is remarkable considering the only fitting parameter is the amplitude of the spheromak component of the state.  相似文献   

10.
石秉仁 《物理学报》1983,32(11):1398-1406
本文讨论了圆截面高比压等离子体关于高n气球模的稳定性,在高比压情况下,相应的极向磁场对气球模有相当强的驱动作用,从而严重影响了第二稳定区的结构,我们详细计算了不同剪切、不同压强梯度及不同极向场参数对气球模本征函数和本征频率的影响,这些结果比较完善地反映了圆截面环流器中理想磁流体气球模理论所预示的主要结论。 关键词:  相似文献   

11.
In order to understand self-organization in helicity-driven systems, we have investigated the dynamics of low-aspect-ratio toroidal plasmas by decreasing the external toroidal field and reversing its sign in time. Consequently, we have discovered that the helicity-driven toroidal plasma relaxes towards the flipped state. Surprisingly, it has been observed that not only toroidal flux but also poloidal flux reverses sign spontaneously during the relaxation process. The self-reversal of the magnetic fields is attributed to the nonlinear growth of the n=1 kink instability of the central open flux.  相似文献   

12.
Large scale dynamos produce small scale current helicity as a waste product that quenches the large scale dynamo process (alpha effect). This quenching can be catastrophic (i.e., intensify with magnetic Reynolds number) unless one has fluxes of small scale magnetic (or current) helicity out of the system. We derive the form of helicity fluxes in turbulent dynamos, taking also into account the nonlinear effects of Lorentz forces due to fluctuating fields. We confirm the form of an earlier derived magnetic helicity flux term, and also show that it is not renormalized by the small scale magnetic field, just like turbulent diffusion. Additional nonlinear fluxes are identified, which are driven by the anisotropic and antisymmetric parts of the magnetic correlations. These could provide further ways for turbulent dynamos to transport out small scale magnetic helicity, so as to avoid catastrophic quenching.  相似文献   

13.
The quantum-mechanical Aharonov-Bohm effect in the diffraction of charged particles by a toroidal solenoid containing a magnetic field is investigated. The total and differential elastic scattering cross sections depend on the magnetic flux inside the solenoid, even in the presence of a “black” ring-shaped screen which prevents charged particles from entering the region where the magnetic field is localized. Relations describing the momentum-transfer cross section for the elastic scattering of charged particles by a toroidal solenoid are obtained in the eikonal approximation and in a unitary model of scattering with a sharp jump in the partial amplitudes. The momentum-transfer scattering cross section is proportional to the average transfer of the longitudinal momentum of the scattered particle and can be expressed in terms of a force operator. It is shown that in the absence of a screen the momentum-transfer scattering cross section of toroidal solenoid is indeed determined only by the part of the incident beam that intersects the inner region of the toroidal solenoid, where the magnetic field intensity and, therefore, the Lorentz force are nonzero. At the same time, the momentum-transfer cross section for the scattering of charged particles by a toroidal solenoid covered by a “black” ring-shaped screen does not depend on the magnetic flux inside the solenoid and is identical to the momentum-transfer cross section for diffraction by the same screen. The contribution from scattering by an opening in the screen, which depends on the magnetic flux, is completely compensated by the contribution of the interference of the scattering amplitudes of the opening and the “black” screen.  相似文献   

14.
Structure of optical vortices   总被引:1,自引:0,他引:1  
Helical modes of light can be focused into toroidal optical traps known as optical vortices, which are capable of localizing and applying torques to small volumes of matter. Measurements of optical vortices created with the dynamic holographic optical tweezer technique reveal an unsuspected dependence of their structure and angular momentum flux on their helicity. These measurements also provide evidence for a novel optical ratchet potential in practical optical vortices.  相似文献   

15.
We argue that the magnetic helicity conservation is violated at the lepton stage in the evolution of early Universe owing to the parity violation in the Standard Model of electroweak interactions. As a result, a cosmological magnetic field which can be a seed for the galactic dynamo obtains from the beginning a substantial magnetic helicity which has to be taken into account in the magnetic helicity balance at the later stage of galactic dynamo. The particle physics mechanism suggested in our works depends neither on helicity of matter turbulence with plasma vortices resulting in the standard α effect in dynamo theory nor on general rotation. The mechanism can result in a self-exitation of an (almost) uniform cosmological magnetic field. The text was submitted by the authors in English.  相似文献   

16.
A statistical model of a three-dimensional, incompressible, cylindrically bounded, current-bearing magnetofluid is presented for the purpose of gaining insight into the nonlinear relaxation process routinely observed in reversed-field-pinch experiments. An absolute equilibrium ensemble is utilized that incorporates energy, magnetic helicity, and magnetic flux constraints. Results are extracted only after an extensive mathematical treatment of the properties of poloidal and toroidal fields. The model predicts the presence of magnetic fluctuations about a cylindrically symmetric, Bessel-function-model, mean magnetic field, which satisfies ▽ × 〈B〉 = μ〈B〉. As Taylor's ∵-parameter approaches 1.56, the model predicts that the significant region of the fluctuation spectrum narrows down to a single (coherent) m = 1 mode. An analogy between the Debye length of an electrostatic plasma and μ?1 suggests the physical validity of the model's prediction of the magnetic-field-fluctuation autocorrelation tensor 〈δB(r) δB(r′)〉, when |;r ? r′| ≥ μ?1.  相似文献   

17.
A generalized vorticity is introduced whose self-linkage (the hybrid helicity) and flux are invariants of ideal incompressible magnetohydrodynamics (MHD) when the Hall term is included. A model of magnetofluid relaxation is constructed for Hall magnetohydrodynamics by assuming that the energy seeks the minimum value compatible with constrained values of magnetic helicity, hybrid helicity, axial magnetic flux, and fluid vorticity flux. As a result of the coupling of magnetic field to fluid vorticity in the generalized vorticity, it is found that the relaxed magnetic-field configuration need not be force free. The presence of a nonvanishing fluid vorticity is shown to be necessary for the existence of relaxed magnetic-field configurations that confine a finite plasma pressure. The study has potential relevance to the dynamics and morphology of space and cosmic plasmas, as well as to pressure confinement and current drive in fusion plasmas.  相似文献   

18.
The evolution of the magnetic helicity tensor for a nonzero mean magnetic field and for large magnetic Reynolds numbers in an anisotropic turbulence is studied. It is shown that the isotropic and anisotropic parts of the magnetic helicity tensor have different characteristic times of evolution. The time of variation of the isotropic part of the magnetic helicity tensor is much larger than the correlation time of the turbulent velocity field. The anisotropic part of the magnetic helicity tensor changes for the correlation time of the turbulent velocity field. The mean turbulent flux of the magnetic helicity is calculated as well. It is shown that even a small anisotropy of turbulence strongly modifies the flux of the magnetic helicity. It is demonstrated that the tensor of the magnetic part of the alpha effect for weakly inhomogeneous turbulence is determined only by the isotropic part of the magnetic helicity tensor.  相似文献   

19.
We discuss a core instability of 't Hooft–Polyakov monopoles in Alice electrodynamics type of models in which charge conjugation symmetry is gauged. The monopole may deform into a toroidal defect which carries an Alice flux and a (non-localizable) magnetic Cheshire charge.  相似文献   

20.
Measurement of the plasma potential in the core of MST marks both the first interior potential measurements in an RFP, as well as the first measurements by a Heavy Ion Beam Probe (HIBP) in an RFP. The HIBP has operated with (20-110) keV sodium beams in plasmas with toroidal currents of (200-480) kA over a wide range of densities and magnetic equilibrium conditions. A positive plasma potential is measured in the core, consistent with the expectation of rapid electron transport by magnetic fluctuations and the formation of an outwardly directed ambipolar radial electric field. Comparison between the radial electric field and plasma flow is underway to determine the extent to which equilibrium flow is governed by E×B. Measurements of potential and density fluctuations are also in progress.Unlike HIBP applications in tokamak plasmas, the beam trajectories in MST (RFP) are both three-dimensional and temporally dynamic with magnetic equilibrium changes associated with sawteeth. This complication offers new opportunity for magnetic measurements via the Heavy Ion Beam Probe (HIBP). The ion orbit trajectories are included in a Grad-Shafranov toroidal equilibrium reconstruction, helping to measure the internal magnetic field and current profiles. Such reconstructions are essential to identifying the beam sample volume locations, and they are vital in MST's mission to suppress MHD tearing modes using current profile control techniques. Measurement of the electric field may be accomplished by combining single point measurements from multiple discharges, or by varying the injection angle of the beam during single discharges.The application of an HIBP on MST has posed challenges resulting in additional diagnostic advances. The requirement to keep ports small to avoid introducing magnetic field perturbations has led to the design and successful implementation of cross-over sweep systems. High levels of ultraviolet radiation are driving alternative methods of sweep plate operation. While, substantial levels of plasma flux into the HIBP diagnostic chambers has led to the use of magnetic plasma suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号