首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compare lineshapes obtained in laser-induced fluorescence and resonantly enhanced multi-photon ionisation, resulting from coherent pulsed excitation of a two-photon transition in xenon atoms. We find that excitation profiles probed by ionisation show power broadening as expected. Here ionisation occurs simultaneously with the coherent excitation. The profiles observed by fluorescence show almost no broadening, because of coherent population return, since the fluorescence occurs predominantly after the excitation pulse is over. Thus the observed lineshape depends characteristically upon the nature of the probing process.  相似文献   

2.
We report on progress toward realizing a predicted superfluid phase in a Fermi gas of atoms. We present measurements of both large positive and large negative scattering lengths in a quantum degenerate Fermi gas of atoms near a magnetic-field Feshbach resonance. We employ an rf spectroscopy technique to directly measure the mean-field interaction energy, which is proportional to the s-wave scattering length. Near the peak of the resonance we observe a saturation of the interaction energy; it is in this strongly interacting regime that superfluidity is predicted to occur. We have also observed anisotropic expansion of the gas, which has recently been suggested as a signature of superfluidity. However, we find that this can be attributed to a purely collisional effect.  相似文献   

3.
We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground-state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.  相似文献   

4.
We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground-state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.  相似文献   

5.
W.N. Mei  Y.C. Lee 《Physica A》1979,96(3):413-434
A monolayer of 4He atoms is treated as a system of hard-sphere bosons in a thin film geometry, with a finite thickness. The method of pseudopotential is used to calculate first the energy spectrum, and then the Helmholtz free energy and other thermodynamic functions of the system. It is found that Bose-Einstein condensation exists below a definite temperature. Much like a liquid-gas transition, the boson system displays a high temperature normal phase, a low temperature condensed superfluid phase and coexistence region. In the present treatment, the minimum momentum associated with the finite thickness of monolayer is used as a parameter. We find that the transition temperature is linearly proportional to the density of the 4He film. After performing double-tangent construction of the Helmholtz free energy curve we find for the specific heat a rounded peak at the transition temperature, in agreement with recent experiments. The ratio of the superfluid density at the transition point to the transition temperature is found to be essentially a constant.  相似文献   

6.
We study collective excitation modes of a fermionic gas of (6)Li atoms in the BEC-BCS crossover regime. While measurements of the axial compression mode in the cigar-shaped trap close to a Feshbach resonance confirm theoretical expectations, the radial compression mode shows surprising features. In the strongly interacting molecular BEC regime, we observe a negative frequency shift with increasing coupling strength. In the regime of a strongly interacting Fermi gas, an abrupt change in the collective excitation frequency occurs, which may be a signature for a transition from a superfluid to a collisionless phase.  相似文献   

7.
We investigate the BCS-BEC crossover in three-dimensional degenerate Fermi gases in the presence of spin-orbit coupling (SOC) and Zeeman field. We show that the superfluid order parameter destroyed by a large Zeeman field can be restored by the SOC. With increasing strengths of the Zeeman field, there is a series of topological quantum phase transitions from a nontopological superfluid state with fully gapped fermionic spectrum to a topological superfluid state with four topologically protected Fermi points (i.e., nodes in the quasiparticle excitation gap) and then to a second topological superfluid state with only two Fermi points. The quasiparticle excitations near the Fermi points realize the long-sought low-temperature analog of Weyl fermions of particle physics. We show that the topological phase transitions can be probed using the experimentally realized momentum-resolved photoemission spectroscopy.  相似文献   

8.
The atomic Bose gas is studied across a Feshbach resonance, mapping out its phase diagram, and computing its thermodynamics and excitation spectra. It is shown that such a degenerate gas admits two distinct atomic and molecular superfluid phases, with the latter distinguished by the absence of atomic off-diagonal long-range order, gapped atomic excitations, and deconfined atomic π-vortices. The properties of the molecular superfluid are explored, and it is shown that across a Feshbach resonance it undergoes a quantum Ising transition to the atomic superfluid, where both atoms and molecules are condensed. In addition to its distinct thermodynamic signatures and deconfined half-vortices, in a trap a molecular superfluid should be identifiable by the absence of an atomic condensate peak and the presence of a molecular one.  相似文献   

9.
崔洋  李静  张林 《物理学报》2021,(5):90-97
采用基于密度泛函理论的紧束缚方法计算研究了外加横向电场对边缘未加氢/加氢钝化的扶手椅型石墨烯纳米带的电子结构及电子布居数的影响.计算结果表明,石墨烯纳米带的能隙变化受其宽带影响.当施加沿其宽度方向的横向外加电场时,纳米带的能带结构及态密度都会产生较大的变化.对于具有半导体性的边缘未加氢纳米带,随着所施加电场强度的增加,会发生半导体-金属的转变.同时,电场也会对能级分布产生显著影响.外加电场导致纳米带内原子上电子布居数分布失去对称性,电场强度越大,其布居数不对称性越明显.边缘加氢钝化可以显著改变纳米带内原子上的布居数分布.  相似文献   

10.
贺丽  余增强 《物理学报》2017,66(22):220301-220301
各向异性超流体中的朗道临界速度并非简单地由运动方向的元激发能谱决定.在自旋-轨道耦合作用下的双分量玻色-爱因斯坦凝聚中,当系统跨过平面波相与零动量相之间的量子相变时,尽管超流声速连续变化,但垂直于自旋-轨道耦合方向的朗道临界速度会出现跳变,跳变幅度随自旋相互作用强度单调增加.根据线性响应理论,计算了凝聚体中运动杂质在不同速度下的能量耗散率,提出可以通过能量耗散观测临界速度在量子相变处的不连续性.  相似文献   

11.
The pairing of fermionic atoms in a mixture of atomic fermion and boson gases at zero temperature is investigated. The attractive interaction between fermions, that can be induced by density fluctuations of the bosonic background, can give rise to a superfluid phase in the Fermi component of the mixture. The atoms of both species are assumed to be in only one internal state, so that the pairing of fermions is effective only in odd-l channels. No assumption about the value of the ratio between the Fermi velocity and the sound velocity in the Bose gas is made in the derivation of the energy gap equation. The gap equation is solved without any particular ansatz for the pairing field or the effective interaction. The p-wave superfluidity is studied in detail. By increasing the strength and/or decreasing the range of the effective interaction a transition of the fermion pairing regime, from the Bardeen-Cooper-Schrieffer state to a system of tightly bound couples can be realized. These composite bosons behave as a weakly-interacting Bose-Einstein condensate.  相似文献   

12.
Dilute gas Bose-Einstein condensates (BEC's), currently used to cool fermionic atoms in atom traps, can also probe the superfluidity of these fermions. The damping rate of BEC-acoustic excitations (phonon modes), measured in the middle of the trap as a function of the phonon momentum, yields an unambiguous signature of BCS-like superfluidity, provides a measurement of the superfluid gap parameter, and gives an estimate of the size of the Cooper pairs in the BEC-BCS crossover regime. We also predict kinks in the momentum dependence of the damping rate which can reveal detailed information about the fermion quasiparticle dispersion relation.  相似文献   

13.
We study the effects of an artificial gauge field on the ground-state phases of the Bose-Hubbard model on a checkerboard superlattice in two dimensions, including the superfluid phase and the Mott and alternating Mott insulators. First, we discuss the single-particle Hofstadter problem, and show that the presence of a checkerboard superlattice gives rise to a magnetic flux-independent energy gap in the excitation spectrum. Then, we consider the many-particle problem, and derive an analytical mean-field expression for the superfluid-Mott and superfluid-alternating-Mott insulator phase transition boundaries. Finally, since the phase diagram of the Bose-Hubbard model on a checkerboard superlattice is in many ways similar to that of the extended Bose-Hubbard model, we comment on the effects of magnetic field on the latter model, and derive an analytical mean-field expression for the superfluid-insulator phase transition boundaries as well.  相似文献   

14.
Quantum phases and phase transitions of weakly to strongly interacting bosonic atoms in deep to shallow optical lattices are described by a single multiorbital mean-field approach in real space. For weakly interacting bosons in one dimension, the critical value of the superfluid to Mott insulator (MI) transition found is in excellent agreement with many-body treatments of the Bose-Hubbard model. For strongly interacting bosons, (i) additional MI phases appear, for which two (or more) atoms residing in each site undergo a Tonks-Girardeau-like transition and localize, and (ii) on-site excitation becomes the excitation lowest in energy. Experimental implications are discussed.  相似文献   

15.
We study by electron-spin-resonance spin-polarized atomic hydrogen adsorbed on the surface of superfluid helium at temperatures T(S) from 50 to 110 mK. The average dipolar field in this 2D system shifts the electron-spin-resonance peak of the adsorbed atoms relative to that of bulk atoms. The shift is directly proportional to surface density. The role of longitudinal magnetization relaxation is played by particle exchange between the 2D and the 3D phases, which diminishes exponentially with decreasing T(S). Therefore at T(S) less, similar 80 mK an excitation field of 0.1 mG disturbs the equilibrium surface density and leads to a magnetization instability observed as sawtooth shaped resonance lines.  相似文献   

16.
王永俊  刘先锋  韩玖荣 《中国物理 B》2009,18(12):5301-5307
This paper studies the superfluidity of ultracold spin-2 Bose atoms with weak interactions in optical lattices by calculating the excitation energy spectrum using the Bogoliubov approach. The energy spectra exhibit the characteristics of the superfluid-phase explicitly and it finds the nonvanishing critical speeds of superfluid. The obtained results display that the critical speeds of superfluid are different for five spin components and can be controlled by adjusting the lattice parameters in experiments. Finally it discusses the feasibilities of implementing and measuring superfluid.  相似文献   

17.
We study the phase structure of a dilute two-component Fermi system with attractive interactions as a function of the coupling and a finite number asymmetry or polarization. In weak coupling, a number asymmetry results in phase separation. A mixed phase containing symmetric superfluid matter and an asymmetric normal phase is favored. For strong coupling we show that the stress on the superfluid phase to accommodate a number asymmetry increases. Near the infinite-scattering length, we calculate the single-particle excitation spectrum and the ground-state energy. A picture of weakly interacting quasiparticles emerges for modest polarizations. In this regime a homogeneous phase with a finite population of quasiparticle states characterized by a gapless spectrum is favored over the phase separated state. These states may be realized in cold atom experiments.  相似文献   

18.
We measured laser-induced-fluorescence (LIF) and beam-depletion (BD) spectra of rubidium atoms (5S-5P transition) on the surface of superfluid helium nanodroplets (M-He_{N} with M=Rb). It is known that when M is a lighter alkali atom electronic excitation always leads to detachment of the excited atom (M;{*}). The dissociation energy, few tens cm;{-1}, comes either as photon excess energy or from the barrierless formation of a M;{*}-He exciplex. We observe that this picture does not hold when M=Rb and the photon excess energy is small: we are able to excite atoms without detaching them from the droplet, thanks to a barrier preventing formation of the exciplex. This system is ideally suited for optical spin pumping in a He nanodroplet, whose achievement we explicitly demonstrate in a pump-probe magnetic circular dichroism experiment.  相似文献   

19.
Starting with a microscopic hamiltonian for a many-boson system with a hardcore interaction, the grand potential of the system, which contains the order-parameter of the lambda transition as one of the thermodynamical variables, is derived by making use of the finite temperature loop expansion. The divergence difficulty caused by the hardcore interaction is circumvented by the conventional field theoretic perturbational renormalization such that the chemical potential is renormalized instead of the conventional mass renormalization. The grand potential obtained consists of the superfluid part and the finite temperature elementary excitation part. The elementary excitation energy spectrum shows the Goldstone boson mode, namely, the photon, for the zero external field. A non-vanishing external field destroys such a Goldstone boson mode by causing an energy gap at zero momentum. The chemical potential and the critical temperature are also obtained for the weak coupling case. It is shown how the Bose-Einstein condensation is affected by the hardcore interaction.  相似文献   

20.
M. A. Baranov 《JETP Letters》1999,70(6):396-402
It is found that the character of single-particle excitations of a trapped neutral-atom Fermi gas is strongly influenced by a superfluid phase transition. Below the transition temperature the presence of a spatially inhomogeneous order parameter (gap) shifts the excitation eigenenergies upward and leads to the appearance of in-gap excitations localized in the outer part of the gas sample. The eigenenergies become sensitive to the gas temperature and are no longer multiples of the trap frequencies. These features should manifest themselves in a strong change of the density oscillations induced by modulations of the trap frequencies and can be used for identifying the superfluid phase transition. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 6, 392–397 (25 September 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号