首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron paramagnetic resonance (EPR) spectra of two consecutive radical pairs (RPs) diffusing inside micelles are numerically calculated. Calculations are carried out for various values of the micelle radius, exchange integral, and mutual diffusion coefficient. In the simple case when the hyperfine interaction with magnetic nuclei can be neglected, it is demonstrated that the spin dynamics in the primary radical pair (RP1) manifests itself in the EPR spectrum of the secondary radical pair (RP2) in a characteristic way: the oddness of the EPR spectrum with respect to its center is violated, and the EPR line intensities and widths for the two partners in the RP2 differ. These features of the RP2 EPR spectrum shape are interpreted as follows: the spin dynamics in the RP1 produces a longitudinal spin polarization and a transverse spin polarization (i.e., spin coherence). Both polarizations are transferred from RP1 to RP2. This spin polarization transfer causes the above features of the RP2 EPR spectrum shape. It is shown that the RP2 EPR spectrum in a sequence of RPs cannot be simulated as a spectrum of a single RP. The features of the RP2 EPR spectrum shape may be, in principle, exploited to reveal the existence of the short-lived RP1.  相似文献   

2.
Although it is thought that perfluoro-2,4-dimethyl-3-isopropyl-3-pentyl (PFR-2) is a candidate for electron paramagnetic resonance (EPR) imaging agents because of its high stability, no study has been made yet on the EPR imaging of PFR-2. In this study, EPR imaging of a phantom including PFR-2 and mice that had received PFR-2 was performed by an in vivo EPR imaging system operating at an EPR frequency of 700 MHz equipped with a bridged loop-gap resonator (inner diameter, 41 mm; axial length, 10 mm). Because PFR-2 is insoluble in water, it was dissolved in perfluorocarbon. The PFR-2 solution was put in cylindrical sample tubes with various inner diameters, and these sample tubes were placed together in a larger cylindrical sample tube filled with a physiological saline solution, which was used as a phantom. The spatial resolution was estimated to be about 3 mm on the basis of EPR imaging of the phantom. EPR images of mice that had received a PFR-2 injection via the intraperitoneal route indicated that PFR-2 remained in the peritoneal cavity even 2 days after the injection. This finding suggests that it is possible to perform EPR imaging of experimental animals using PFR-2 as an imaging agent which persists in a biological system. Authors' address: Hidekatsu Yokoyama, National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan  相似文献   

3.
Electron paramagnetic resonance (EPR)-based oximetry is capable of quantifying oxygen content in samples. However, for a heterogeneous environment with multiple pO2 values, peak-to-peak linewidth of the composite EPR lineshape does not provide a reliable estimate of the overall pO2 in the sample. The estimate, depending on the heterogeneity, can be severely biased towards narrow components. To address this issue, we suggest a postprocessing method to recover the linewidth histogram which can be used in estimating meaningful parameters, such as the mean and median pO2 values. This information, although not as comprehensive as obtained by EPR spectral-spatial imaging, goes beyond what can be generally achieved with conventional EPR spectroscopy. Substantially shorter acquisition times, in comparison to EPR imaging, may prompt its use in clinically relevant models. For validation, simulation and EPR experiment data are presented.  相似文献   

4.
Lithium octa-n-butoxy-naphthalocyanine (LiNc-BuO) is a stable free radical that can be detected by electron paramagnetic resonance (EPR) spectroscopy. Previously we have reported that microcrystals of LiNc-BuO exhibit a single sharp EPR peak, whose width varies linearly with the partial pressure of paramagnetic molecules such as oxygen and nitric oxide. In this report, we present the effect of nitrogen dioxide (NO2), which is also a paramagnetic molecule, on the EPR properties of LiNc-BuO. The gas-sensing property of LiNc-BuO is attributed to the open molecular framework of the crystal structure which is arranged with wide channels capable of accommodating large molecules such as NO2. The EPR linewidth of LiNc-BuO was highly sensitive to the partial pressure of NO2 in the gas mixture. The line-broadening was quick and reversible in the short-term for low concentration of NO2. However, the EPR signal intensity decreased with time of exposure, apparently due to a reaction of NO2 with LiNc-BuO crystals to give diamagnetic products. The results suggested that LiNc-BuO may be a useful probe for the determination of trace amounts of NO2 using EPR spectroscopy.  相似文献   

5.
采用Microsoft Visual BASIC 4.0 for Windows 95编写了一个EPR谱图模拟软件.此软件采用鼠标控制命令按键进行程序过程.得到的图象分辨率和色彩优于用其他早期开发的BASIC语言编写的程序,打印的黑白图象质量也很好.运算时间小于20秒.这种软件可用于多种EPR模拟应用,包括自由基EPR谱图的模拟、过渡金属离子E PR谱图的模拟和二维EPR成像的模拟.EPR成像可以彩色强度图、等高线图或三维俯视图来表示.所有的模拟图象均可用激光打印机打印成黑白图片.自由基模拟程序的数据组有2560点.EPR成像的像素一般为128×128点.  相似文献   

6.
The EPR spectrum of the spin 1/2 paramagnetic centers with a relatively slow relaxation is considered in the case when they are coupled via the Heisenberg exchange interaction to partners which have short times of the longitudinal and transverse paramagnetic relaxation. Under these conditions only the EPR line of paramagnetic centers with a relatively slow relaxation is detectable in experiment. The shape of this line is analyzed by solving numerically kinetic equations for the spin density matrix for simple model systems. Depending on a ratio between the exchange integral and the paramagnetic relaxation rates of partner spins, the EPR line shifts in opposite directions. For moderate relaxation rates, as the relaxation rates decrease, the EPR line shifts toward the gravity center of the total EPR spectrum. In the case of extremely fast relaxation, as the relaxation rates decrease, the reverse shift of the EPR line is expected, the line shifts away from the gravity center of the total EPR spectrum. This type of the non-monotonous line shift was experimentally observed for the monocrystal of [CuNd2(C4O4)4(H2O)16] · 2H2O when relaxation rates were changed by temperature variation.  相似文献   

7.
We investigate the low temperature X-band electron paramagnetic resonance (EPR) of YBa(2)Cu(3)O(x) compounds with x congruent with 6.0 doped with Dy(3+), Tb(3+), and Nd(3). The EPR spectra of Dy(3+) and Tb(3+) have been identified. The EPR of Tb(3+) is used also to study the effect of suppression of high T(c) superconductivity by doping with Tb(3+). The EPR of Nd(3+) is probably masked by the intense resonance of Cu(2+). All experimental EPR results compare well with theoretical estimations.  相似文献   

8.
Electron paramagnetic resonance (EPR) spectroscopy in combination with thermal methods were used to identify and characterize Mn2+ in the Chinese loess that is a multimineral system. EPR spectra of the loess samples from the classic loess-paleosol section in central China show the presence of trace amounts of Mn2+; whereas paleosol samples present no Mn2+ EPR signal. The spectral changes upon step heating from room temperature to 1000 °C suggest that this EPR signal in the loess arises from Mn substituted into CaCO3. This study provides a direct evidence that the loess-paleosol profiles were formed under the changing redox conditions caused by a past climatic change.  相似文献   

9.
The EPR spectra of scandium acceptors and Sc2+(3d) ions are observed in 6H-SiC crystals containing a scandium impurity. The EPR spectra of scandium acceptors are characterized by comparatively small hyperfine interaction constants, whose values are consistent with the constants for other group III elements in SiC: boron, aluminum, and gallium acceptors. The EPR spectra of scandium acceptors undergo major changes in the temperature interval 20–30 K. In the low-temperature phase the EPR spectra are characterized by orthorhombic symmetry, whereas the high-temperature phase has higher axial symmetry. The EPR spectra observed at temperatures above 35 K and ascribed by the authors to Sc2+(3d) ions, or to the A 2− state of scandium, have significantly larger hyperfine structure constants and narrower lines in comparison with the EPR spectra of scandium acceptors. The parameters of these EPR spectra are close to those of Sc2+(3d) in ionic crystals and ZnS, whereas the parameters of the EPR spectra of scandium acceptors correspond more closely to the parameters of holes localized at group III atoms, in particular, at scandium atoms in GeO2. It is concluded that in all centers the scandium atoms occupy silicon sites. Fiz. Tverd. Tela (St. Petersburg) 39, 52–57 (January 1997)  相似文献   

10.
Free radical properties of different types of tumor cells were compared. Electron paramagnetic resonance (EPR) studies were performed for human (BM, IGR and SK) and mouse (B16 and S91) melanoma cells. In contrast to melanotic melanoma IGR, BM and B16 cells, amelanotic S91 cells contained only a trace amount of melanin. No EPR signals were detected for Caco2 cells and only a very weak EPR line was measured for fibroblast cells. Melanin does not exist in these cells. The aim of this work was the application of EPR spectroscopy to the determination of the kind of melanin (eu- or pheomelanin) in melanotic tumor cells. Microwave saturation of EPR spectra of tumor cells with high and low melanin content was compared. Eumelanin was identified in human BM, IGR, SK, and B16 melanoma cells. Single asymmetrical EPR lines were detected for these samples. The EPR spectra of human BM melanoma cells had the highest intensity. Paramagnetic centers in amelanotic S91 melanoma cells were also found. Trace amounts of eumelanin free radicals and the other free radicals in cells were responsible for their very weak EPR lines. The obtained results indicate that EPR spectroscopy is a very useful technique for the identification of melanin in tumor cells. Strong differences of microwave saturation of EPR lines for cells with high and low melanin content were observed. EPR lines of tumor cells with a low melanin content did not saturate at the used range of microwave power. Saturation was observed for melanotic BM melanoma cells.  相似文献   

11.
Effect of metal ions on free radical properties of natural melanin produced by soil fungiCladosporium cladosporioides was studied. The electron paramagnetic resonance (EPR) spectrum of the studied melanin consists mainly of a single line of eumelanin, and only a very weak signal of pheomelanin was observed. o-Semiquinone free radicals form paramagnetic centers in melanin. Diamagnetic Zn2+ ions produce an increase in the free radical concentration in melanin. Quenching of melanin EPR lines was obtained for melanin and paramagnetic Cu2+ ion complexes. Slow spin-lattice relaxation processes are characteristic for the free radicals in melanin samples and fast spin-lattice relaxation was observed for Cu2+ ions. The EPR lines of copper ions saturate at higher microwave powers than the EPR lines of melanin.  相似文献   

12.
Two different samples of natural zeolite have been investigated by X-band electron paramagnetic resonance (EPR) spectroscopy. The observed EPR spectra are typical to those observed for Fe3+ and Mn2+ ions. The lines, related to the iron, are observed, respectively at g≈4.3 and g≈2. The observed six lines, at g≈2, are the hyperfine structure due to the Mn2+ ions. The simulation of the experimental EPR spectra suggests that both of the manganese and the iron are present in more one site. The temperature dependence of the EPR spectra has been also investigated. The nature of the different sites involved in the EPR absorption is discussed.  相似文献   

13.
The E' defect in irradiated fused quartz has spin lattice relaxation times (T(1)) about 100 to 300 μs and spin-spin relaxation times (T(2)) up to about 200 μs, depending on the concentration of defects and other species in the sample. These long relaxation times make it difficult to record an unsaturated continuous wave (CW) electron paramagnetic resonance (EPR) signal that is free of passage effects. Signals measured at X-band (~9.5 GHz) by three EPR methods: conventional slow-scan field modulated EPR, rapid scan EPR, and pulsed EPR, were compared. To acquire spectra with comparable signal-to-noise, both pulsed and rapid scan EPR require less time than conventional CW EPR. Rapid scan spectroscopy does not require the high power amplifiers that are needed for pulsed EPR. The pulsed spectra, and rapid scan spectra obtained by deconvolution of the experimental data, are free of passage effects.  相似文献   

14.
Measurement of electronic g-factors (g) from radicals in irradiated organic crystals is generally difficult because the overall EPR pattern is usually the composite of several components, e.g., from multiple radicals and from multiple magnetic sites. However, when an ENDOR line is fully resolved, the method of ENDOR-induced EPR (EI-EPR, or EIE) in principle permits identification of the EPR pattern from the individual component yielding the line. To examine this method as an approach useful for measuring g, we used it to measure those of known radicals in two different crystal systems. First, to verify correspondence of the EIE and EPR sufficient for using EIE patterns to extract g, we used both EIE and EPR to measure g of (*CH(COOH)(2) from irradiated crystals of malonic acid. Then, to illustrate the procedure applied to a system giving a more complex EPR pattern, we used EIE to measure g of the O6-protonated anion radical of guanine in irradiated guanine.HCl.2H(2)O crystals. EPR results from the malonic acid radical are g(max)=2.00374(2), g(mid)=2.00331(2), and g(min)=2.00234(3); EIE results from the same radical are g(max)=2.00375(2), g(mid)=2.00334(2), and g(min)=2.00238(2), where numbers in parentheses indicate statistical uncertainties in the respective least significant digits. In addition, eigenvectors from the two sets of measurements agree to approximately 1 degrees. Results from the guanine radical are g(max)=2.00490(2), g(mid)=2.00318(4), and g(min)=2.00218(4). (The uncertainties should reliably indicate relative accuracy, while absolute accuracy is within +/-0.0002 as indicated by simultaneous measurement of Cr(3+) in MgO.)  相似文献   

15.
In this paper, we investigate the behaviors of Einstein-Podolsky-Rosen (EPR) steering manipulated via quantum-jump-based feedback (QJBF) in noisy environment. We firstly derived the master equation that governs the system evolution. It is shown that the QJBF with an appropriate feedback parameter can preserve and generate the EPR steering destroyed by the dissipative environment. EPR steering quickly decays as dissipative time increases. For feedback parameter \(\lambda =\frac {\pi }{2}\), EPR steering oscillatorily develops to zero with evolution time, while entanglement decreases monotonously with decoherent time, so QJBF with feedback parameter \(\lambda =\frac {\pi }{2}\) can effectively protect EPR steering in some certain time.  相似文献   

16.
We report the electron paramagnetic resonance (EPR) studies of MgTi2O4 in the 300–140 K range. Above the transition temperature T t (~258 K), the EPR results indicate that MgTi2O4 is paramagnetic. The parameters of the EPR spectra show an anomalous change at T t. The clear EPR lines can be observed in temperature between T t and 220 K. Besides that the EPR intensity, g value, and EPR linewidth increase with decreasing temperature; in temperature range below 220 K, no clear EPR line can be detected. The EPR spectra results demonstrate that magnetic spin-singlet state and the orbital density wave of MgTi2O4 system are formed gradually with decreasing temperature at low temperature range.  相似文献   

17.
A pulsed 2-mm band EPR spectrometer is described. The perspectives of 2-mm band EPR are comprehensively discussed.  相似文献   

18.
The mechanism of oxygen response in several newly synthesized oxygen-sensitive chars was studied with the use of EPR spectroscopy. The results suggest that the compounds contain two basic types of paramagnetic centers (PC). The change in oxygen concentration leads to a mutual and reversible transformation of PCs in chars, which is reflected in EPR parameters. The adsorbed molecular oxygen progressively disturbs the wave functions of the PCs and so breaks the Heisenberg exchange between them. At high oxygen concentration, the 2D dipole-dipole interaction between PCs at the surface comes into play and determines the EPR lineshape. A suggested model quantitatively describes the evolution of the basic EPR parameters of each PC as a function of oxygen concentration.  相似文献   

19.
Electron paramagnetic resonance (EPR) studies have been carried out on Mn2+ ions doped in nickel maleate tetrahydrate single crystals in the temperature range 103-413 K on X-band frequency. The EPR spectrum at room temperature exhibits a group of five fine structure transitions each splits into six hyperfine components. Angular variation studies reveal the presence of a single site and it is found that Mn2+ ions enter the lattice substitutionally. From the observed EPR spectrum, the spin-Hamiltonian parameters have been evaluated. The variation of zero-field splitting parameter (D) with temperature is measured. The observed EPR spectra exhibit a large anisotropy in the widths of Mn2+ resonance lines. The widths of Mn2+ resonance lines increase with the Zeeman field intensity and these observations have been discussed in detail. The infrared spectrum exhibits bands characteristic of the carboxylic acid salts.  相似文献   

20.
The electron paramagnetic resonance (EPR) spectra of Cu2+-doped RbH2 PO4 at elevated temperatures indicate a phase transition at 358 K. The EPR-silent state at this temperature is attributed to a so-called polymeric phase transition. After the transition when the temperature is lowered to 293 K, the EPR signal does not appear; therefore, the transition is irreversible. This result seems to be in agreement with the other observations. The EPR spectra for the sample indicate the presence of two sites for Cu2+, and the values of EPR parameters are in accord with the literature on Cu2+-doped single crystals. Any other phase transitions could not to be observed at low temperatures down to 113 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号