首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The frictional drag between parallel two-dimensional electron systems has been measured in a regime of strong interlayer correlations. When the bilayer system enters the excitonic quantized Hall state at total Landau level filling factor nu(T) = 1, the longitudinal component of the drag vanishes but a strong Hall component develops. The Hall drag resistance is observed to be accurately quantized at h/e(2).  相似文献   

2.
At high magnetic fields and low temperatures the phonon drag magnetothermopower is dominated by phonons with energies much greater than kBT. This fact is used to develop an approximate formula which can be evaluated in a few percent of the time required by the rigorous result. We show that the predominant contribution to the magnetothermopower comes from the transition process in which both the initial Landau level and the final Landau level have the same quantum number n = n'= nf where nf distinguishes the level nearest to the Fermi energy. A double summation over n and n'can therefore be neglected. In the temperature range of 1.275 K to 5.005 K, all the HPFA results agree with the experimental data and the rigorous theoretical results qualitatively. At T = 2.495 and 2.937 K, the HPFA results arein fair quantitative accordance with the experimental data and the rigorous theoretical results.  相似文献   

3.
We consider the oscillating sign of the drag resistivity and its anomalous temperature dependence discovered experimentally in a bilayer system in the regime of the integer quantum Hall effect. We attribute the oscillating sign to the effect of disorder on the relation between an adiabatic momentum transfer to an electron and the displacement of its position. While in the absence of any Landau level mixing a momentum transfer implies a displacement of (with being the magnetic length), Landau level mixing induced by short range disorder adds a potentially large displacement that depends on the electron's energy, with the sign being odd with respect to the distance of that energy from the center of the Landau level. We show how the oscillating sign of drag disappears when the disorder is smooth and when the electronic states are localized.  相似文献   

4.
We consider mesoscopic fluctuations of Coulomb drag transresistivity between two layers at a Landau level filling factor nu = 1/2 each. We find that, at low temperatures, sample to sample fluctuations exceed both the ensemble average and the corresponding fluctuations at B = 0. At the experimentally relevant temperatures, the variance of the transresistivity is proportional to T(-1/2). We find the dependence of this variance on density and magnetic field to reflect the attachment of two flux quanta to each electron.  相似文献   

5.
We present an effective elastic theory which quantitatively describes the stripe phase of the two-dimensional electron gas in high Landau levels ( N>/=2). The dynamical matrix is obtained with remarkably high precision using the time-dependent Hartree-Fock approximation. A renormalization group analysis shows that at T = 0, as the partial filling factor Deltanu identical withnu- left floornu right floor moves away from 1/2, the anisotropic conducting state may undergo quantum phase transitions: stripes may get pinned along their conducting direction by disorder, or may lock into one another to form a crystal. The transitions should be reflected in the temperature dependence of the dissipative conductivity.  相似文献   

6.
We consider a bilayer electronic system at a total Landau level filling factor nu = 1, and focus on the transition from the regime of weak interlayer coupling to that of the strongly coupled (1,1,1) phase (or "quantum Hall ferromagnet"). Making the assumption that in the transition region the system is made of puddles of the (1,1,1) phase embedded in a bulk of the weakly coupled state, we show that the transition is accompanied by a strong increase in longitudinal Coulomb drag that reaches a maximum of approximately h/2e(2). In that regime the longitudinal drag increases with decreasing temperature.  相似文献   

7.
The high-field critical behavior of type-II superconductors with weak disorder is dominated by the Landau levels of Cooper pairs. The macroscopic degeneracy of Landau manifolds suppresses phase coherence and eliminates the Abrikosov transition in dimensions two and three. A novel phase transition, unrelated to the conventional Abrikosov transition, is predicted to take its place. At this transition the normal state is unstable to the charge-density wave of Cooper pairs. The nature of this new state is discussed. This phase should be most readily observable in layered materials at fields > 1–10T.  相似文献   

8.
Tina Raoufi  Jincheng He 《中国物理 B》2023,32(1):17504-017504
We present a study on the magnetocaloric properties of a CaBaCo$_{4}$O$_{7}$ polycrystalline cobaltite along with research on the nature of magnetic phase transition. The magnetization as a function of temperature identifies the ferrimagnetic to paramagnetic transition at a Curie temperature of 60 K. Moreover, a Griffiths-like phase is confirmed in a temperature range above $T_{\rm C}$. The compound undergoes a crossover from the first to second-order ferrimagnetic transformation, as evidenced by the Arrott plots, scaling of the universal entropy curve, and field-dependent magnetic entropy change. The maximum of entropy change is 3 J/kg$\cdot$K for $\Delta H = 7$ T at ${T}_{\rm C}$, and a broadening of the entropy peak with increasing magnetic field indicates a field-induced transition above $T_{\rm C}$. The analysis of the magnetic entropy change using the Landau theory reveals the second-order phase transition and indicates that the magnetocaloric properties of CaBaCo$_{4}$O$_{7}$ are dominated by the magnetoelastic coupling and electron interaction. The corresponding values of refrigerant capacity and relative cooling power are estimated to be 33 J/kg and 42 J/kg, respectively.  相似文献   

9.
The spin degree of freedom in quantum phases of the second Landau level is probed by resonant light scattering. The long wavelength spin wave, which monitors the degree of spin polarization, is at the Zeeman energy in the fully spin-polarized state at ν = 3. At lower filling factors, the intensity of the Zeeman mode collapses, indicating loss of polarization. A novel continuum of low-lying excitations emerges that dominates near ν = 8/3 and ν = 5/2. Resonant Rayleigh scattering reveals that quantum fluids for ν < 3 break up into robust domain structures. While the state at ν = 5/2 is considered to be fully polarized, these results reveal unprecedented roles for spin degrees of freedom.  相似文献   

10.
All the previous homogeneous theories result in MΧΧ = 0 which are at variance with the experimental data. It is for this reason, previous theories have consistently used experimental value of MΧΧ in calculating thermopower tensor S. The inhomogeneous and non-equilibrium formalism proposed by Dyakin et al. was generalized to including both transverse and longitudinal modes of electron-phonon interaction and considering the broadening of the Landau level. The resulting formula gives theoretical values of MΧΧ for GaAs/AlGaAs heterojunctions which are in accord with experimental ,data at oscillation phases but (λp/)l/2 times smaller than experimental data for T = 1.275 K, 2.937 K, 5.005 K and C = 0.20 where λp and are the phonon mean free path and effective thickness of the heterojunctions. By means of the semi-empirical formula of MzZ with extra factor (λp/)l/2 in, phonon drag magnetothermopower can be calculated from theoretical values of M and MΧΧ.  相似文献   

11.
We have investigated the fractional quantum Hall states of Dirac electrons in a graphene layer in different Landau levels. The relativistic nature of the energy dispersion relation of electrons in graphene significantly modifies the interelectron interactions. This results in a specific dependence of the ground state energy and the energy gaps for electrons on the Landau-level index. For the valley-polarized states, i.e., at nu=1/m, m being an odd integer, the energy gaps have the largest values in the n=1 Landau level. For the valley-unpolarized states, e.g., for the 2/3 state, the energy gaps are suppressed for n=1 as compared to those at n=0. For both n=1 and n=0, the ground state of the 2/3 system is fully valley-unpolarized.  相似文献   

12.
13.
Measurements revealing anomalously large frictional drag at the transition between the weakly and strongly coupled regimes of a bilayer two-dimensional electron system at total Landau level filling factor nu(T)=1 are reported. This result suggests the existence of fluctuations, either static or dynamic, near the phase boundary separating the quantized Hall state at small layer separations from the compressible state at larger separations. Interestingly, the anomalies in drag seem to persist to larger layer separations than does interlayer phase coherence as detected in tunneling.  相似文献   

14.
The fractional quantum Hall effect is observed at low magnetic field where the cyclotron energy is smaller than the Coulomb interaction energy. The nu=5/2 excitation gap at 2.63 T is measured to be 262+/-15 mK, similar to values obtained in samples with twice the electronic density. Examining the role of disorder on the 5/2 state, we find that a large discrepancy remains between theory and experiment for the intrinsic gap extrapolated from the infinite mobility limit. The observation of a 5/2 state in the low-field regime suggests that inclusion of nonperturbative Landau level mixing may be necessary to fully understand the energetics of half-filled fractional quantum Hall liquids.  相似文献   

15.
The local density of states of the adsorbate-induced two-dimensional electron system is studied in magnetic fields up to B=6 T. Landau quantization is observed and drift states with a width of about the magnetic length are found in agreement with theoretical predictions. At the tails of the Landau levels the states form closed paths indicating localization. These states show the expected energy dependence. A multifractal analysis applied to the data results in a nice parabolic shape of the characteristic f(alpha) spectra, but we find only a slight displacement of the origin from alpha=2.0 for the states in the center of the Landau level.  相似文献   

16.
A spin current perpendicular to the electric current is investigated around a Landau level filling factor nu=3 in a GaAs/AlGaAs two-dimensional electron system. Measurements of dynamic nuclear polarization in the vicinity of the edge of a specially designed Hall bar sample indicate that the direction of the spin current with respect to the Hall electric field reverses its polarity at nu=3, where the dissipative current carried by holes in the spin up Landau level is replaced with that by electrons in the spin down Landau level.  相似文献   

17.
We report on numerical study of the Dirac fermions in partially filled N=3 Landau level (LL) in graphene. At half-filling, the equal-time density-density correlation function displays sharp peaks at nonzero wave vectors +/-q*. Finite-size scaling shows that the peak value grows with electron number and diverges in the thermodynamic limit, which suggests an instability toward a charge density wave. A symmetry broken stripe phase is formed at large system size limit, which is robust against perturbation from disorder scattering. Such a quantum phase is experimentally observable through transport measurements. Associated with the special wave functions of the Dirac LL, both stripe and bubble phases become possible candidates for the ground state of the Dirac fermions in graphene with lower filling factors in the N=3 LL.  相似文献   

18.
Fractionally charged quasiparticles, which obey non-abelian statistics, were predicted to exist in the ν=8/3, ν=5/2, and ν=7/3 fractional quantum Hall states (in the second Landau level). Here we present measurements of charge and neutral modes in these states. For both ν=7/3 and ν=8/3 states, we found a quasiparticle charge e=1/3 and an upstream neutral mode only in ν=8/3-excluding the possibility of non-abelian Read-Rezayi states and supporting Laughlin-like states. The absence of an upstream neutral mode in the ν=7/3 state also proves that edge reconstruction was not present in the ν=7/3 state, suggesting its absence also in ν=5/2 state, and thus may provide further support for the non-abelian anti-pfaffian nature of the ν=5/2 state.  相似文献   

19.
We study the competition between the long-range Coulomb interaction, disorder scattering, and lattice effects in the integer quantum Hall effect (IQHE) in graphene. By direct transport calculations, both nu=1 and nu=3 IQHE states are revealed in the lowest two Dirac Landau levels. However, the critical disorder strength above which the nu=3 IQHE is destroyed is much smaller than that for the nu=1 IQHE, which may explain the absence of a nu=3 plateau in recent experiments. While the excitation spectrum in the IQHE phase is gapless within numerical finite-size analysis, we do find and determine a mobility gap, which characterizes the energy scale of the stability of the IQHE. Furthermore, we demonstrate that the nu=1 IQHE state is a Dirac valley and sublattice polarized Ising pseudospin ferromagnet, while the nu=3 state is an xy plane polarized pseudospin ferromagnet.  相似文献   

20.
The lowest Landau level of graphene is studied numerically by considering a tight-binding Hamiltonian with disorder. The Hall conductance sigma_{xy} and the longitudinal conductance sigma_{xx} are computed. We demonstrate that bond disorder can produce a plateaulike feature centered at nu=0, while the longitudinal conductance is nonzero in the same region, reflecting a band of extended states between +/-E_{c}, whose magnitude depends on the disorder strength. The critical exponent corresponding to the localization length at the edges of this band is found to be 2.47+/-0.04. When both bond disorder and a finite mass term exist the localization length exponent varies continuously between approximately 1.0 and approximately 7/3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号