首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A distant mirror leads to a vacuum-induced level shift in a laser-excited atom. This effect has been measured with a single mirror 25 cm away from a single, trapped barium ion. This dispersive action is the counterpart to the mirror's dissipative effect, which has been shown earlier to effect a change in the ion's spontaneous decay [Nature (London) 413, 495 (2001)]]. The experimental data are well described by eight-level optical Bloch equations which are amended to take into account the presence of the mirror according to the model in Phys. Rev. A 66, 023816 (2002)]. Observed deviations from simple dispersive behavior are attributed to multilevel effects.  相似文献   

2.
We propose a scheme of optical trapping of fluorescent molecules, based on the strongly enhanced optical field due to surface plasmon resonances at laser illuminated metal tips or particles. A semiclassical approach is compared to a quantum-mechanical one. Attractive as well as repulsive forces are possible depending on the wavelength of the optical field. The trapping potential is shown to be strong enough to overcome the Brownian motion in water solution for common optical tweezer light inten-sities. Single molecule resonance Raman spectroscopy probes are particularly well suited for the trap-ping scheme. Finally we propose intracellular probing of the function of biomolecules as an application.  相似文献   

3.
Optical tweezers, a simple and robust implementation of optical micromanipulation technologies, have become a standard tool in biological, medical and physics research laboratories. Recently, with the utilization of holographic beam shaping techniques, more sophisticated trapping configurations have been realized to overcome current challenges in applications. Holographically generated higher‐order light modes, for example, can induce highly structured and ordered three‐dimensional optical potential landscapes with promising applications in optically guided assembly, transfer of orbital angular momentum, or acceleration of particles along defined trajectories. The non‐diffracting property of particular light modes enables the optical manipulation in multiple planes or the creation of axially extended particle structures. Alongside with these concepts which rely on direct interaction of the light field with particles, two promising adjacent approaches tackle fundamental limitations by utilizing non‐optical forces which are, however, induced by optical light fields. Optoelectronic tweezers take advantage of dielectrophoretic forces for adaptive and flexible, massively parallel trapping. Photophoretic trapping makes use of thermal forces and by this means is perfectly suited for trapping absorbing particles. Hence the possibility to tailor light fields holographically, combined with the complementary dielectrophoretic and photophoretic trapping provides a holistic approach to the majority of optical micromanipulation scenarios.  相似文献   

4.
处于倏逝场中的微小粒子会受到辐射压力的作用而朝着倏逝场的传播方向运动,基于此原理的微小粒子驱动技术可用于介质颗粒、胶体颗粒、生物细胞等微小粒子的捕获和驱动.由于倏逝场光学微操作系统不会受到物镜焦深和激光光斑尺寸的限制,因此它比自由空间系统的优越性更强,而波导形成的光学力可以应用于长距离驱动,其仅仅受限于系统的散射和吸收...  相似文献   

5.
The localized enhanced near field on nanostructures has been attracting much attention for a template for size-selective optical trapping (tweezers) beyond the diffraction limit. The near-field optical trapping has mainly been studied using metallic substrates such as Au nanodot pairs, periodic Al nanoslits, nanoapertures on an Au film, etc. In this paper, we newly propose a Mie-scattered-near-field optical trapping scheme for size-selective photocatalytic application using pairs of poly-rutile TiO2 nanospheres. The optical intensity distribution in a 3D-nanogap space between the nanospheres was simulated by a 3D FDTD method. The simulation system consists of the two TiO2 nanospheres placed on a silica substrate in water. The 400-nm excitation laser is used for both the near-field trapping and the photocatalyst excitation. The optical trapping forces were calculated based on the near-field optical intensity distribution. The trapping stiffness for 20-nm polystyrene sphere at a gap distance of 20 nm was 6.4 pN/nm/W. The optical force vector shows that the object like virus can be trapped with sufficient forces into the nanogap space and then is driven into the direct surface of the TiO2 sphere. This result suggests that this system works as a photocatalytic trapping for killing virus, protein, etc.  相似文献   

6.
By tightly focusing a laser field onto a single cold ion trapped in front of a far-distant dielectric mirror, we could observe a quantum electrodynamic effect whereby the ion behaves as the optical mirror of a Fabry-Pérot cavity. We show that the amplitude of the laser field is significantly altered due to a modification of the electromagnetic mode structure around the atom in a novel regime in which the laser intensity is already changed by the atom alone. We propose a direct application of this system as a quantum memory for single photons.  相似文献   

7.
The use of optical traps to measure or apply forces on the molecular level requires a precise knowledge of the trapping force field. Close to the trap center, this field is typically approximated as linear in the displacement of the trapped microsphere. However, applications demanding high forces at low laser intensities can probe the light-microsphere interaction beyond the linear regime. Here, we measured the full nonlinear force and displacement response of an optical trap in two dimensions using a dual-beam optical trap setup with back-focal-plane photodetection. We observed a substantial stiffening of the trap beyond the linear regime that depends on microsphere size, in agreement with Mie theory calculations. Surprisingly, we found that the linear detection range for forces exceeds the one for displacement by far. Our approach allows for a complete calibration of an optical trap.  相似文献   

8.
We discuss the prospect of using the 87Sr+ ion as an optical frequency standard. The ion offers a narrow electric quadrupole clock transition which has no first-order Zeeman shifts, and the required wavelengths can be generated with convenient solid-state laser systems. We describe how to cool and probe the ion in zero magnetic field by employing polarisation modulation of the cooling light to avoid coherent population trapping in dark states. The polarisation modulation scheme also provides optical pumping of the ion into the initial state of the narrow clock transition.  相似文献   

9.
Based on our previous investigation of optical tweezers with dark field illumination [Chin. Phys. Left. 25(2008)329] nanoparticles at large trap depth are better viewed in wide field and real time for a long time, but with poor forces. Here we present the mismatched tube length to compensate for spherical aberration of an oil-immersion objective in a glass-water interface in an optical tweezers system for manipulating nanoparticles. In this way, the critical power of stable trapping particles is measured at different trap depths. It is found that trap depth is enlarged for trapping nanoparticles and trapping forces are enhanced at large trap depth. According to the measurement, 70-nm particles are manipulated in three dimensions and observed clearly at large appropriate depth. This will expand applications of optical tweezers in a nanometre-scale colloidal system.  相似文献   

10.
Analytical propagation expression of a radial Airy array beam in coherent and incoherent combination passing through paraxial ABCD system is derived, and used to investigate the effect of combination scheme, array orientation and initial phase of Airy beamlet on propagation dynamics of the resulting beam in free space, where optical spot array and vortex array with different shapes are also found, respectively. And then taking four-beamlet Airy array beam in same array orientation as an example, square optical spot array obtained in focal field can be used for simultaneous trapping multiple Rayleigh particles with relative refractive index larger than 1. The transverse gradient forces serving as restore forces tend to push particles at different initial positions to their individual optical spot center. The analysis of trapping stability indicates that larger input peak intensity of Airy beamlet and smaller particle size are benefit to trapping particle owing to many deeper potential wells. Vortex array produced by coherent combined Airy array beam in this paper is expected to be useful for simultaneous trapping microparticles with relative refractive index smaller than 1.  相似文献   

11.
We report on a stable optical trap suitable for a macroscopic mirror, wherein the dynamics of the mirror are fully dominated by radiation pressure. The technique employs two frequency-offset laser fields to simultaneously create a stiff optical restoring force and a viscous optical damping force. We show how these forces may be used to optically trap a free mass without introducing thermal noise, and we demonstrate the technique experimentally with a 1 g mirror. The observed optical spring has an inferred Young's modulus of 1.2 TPa, 20% stiffer than diamond. The trap is intrinsically cold and reaches an effective temperature of 0.8 K, limited by technical noise in our apparatus.  相似文献   

12.
We observed that laser-induced cavitation bubbles in water can be trapped in a self-focused laser beam. Both optical imaging and acoustic detection have been utilized to confirm bubble trapping. Transverse and longitudinal trapping forces were measured to be as large as 87 and 11 pN, respectively. This result is contrary to conventional wisdom, since the mechanism of trapping in conventional optical tweezers implies that a low-index particle (a bubble being the limiting case) should be antitrapped.  相似文献   

13.
Jonáss A  Zemánek P  Florin EL 《Optics letters》2001,26(19):1466-1468
We show that the optical trapping of dielectric particles by a single focused beam in front of a weakly reflective surface is considerably affected by interference of the incident and reflected beams, which creates a standing-wave component of the total field. We use the two-photon-excited fluorescence from a trapped dyed probe to detect changes in the distance between the trapped beam focus as the focus approaches the reflective surface. This procedure enables us to determine the relative strengths of the single-beam and the standing-wave trapping forces. We demonstrate that, even for reflection from a glass-water interface, standing-wave trapping dominates, as far as 5 mum from the surface.  相似文献   

14.
We report a comprehensive process for designing and prototyping new and optimized optical trapping systems. A combination of traditional lens design strategies, simulation of optical forces, and high-end ultraprecision machining of optical free-form surfaces is applied to the realization of a highly specialized optical trapping system. The resulting compact and lightweight optical modules potentially open new classes of applications for optical manipulation. As an example we present a customized 3D trapping module made of a single piece of polymethylmethacrylate, with a large working distance of 650?μm.  相似文献   

15.
We have studied the behavior of nano or micro size composite particles submitted to optical trapping forces and a comparison was made with homogeneous particles of similar dimension. The forces were measured using the power spectrum signal analysis. Most of the results presented were obtained using a lateral effect position sensitive detector (PSD), which allowed the fluctuations of the particle position in the optical trap to be monitored. A 4-quadrant photodiode was also used for the same purpose. We bring clear experimental evidence that the trapping force was increased by a factor of about 2-3 for composite particles made of a colloidal gold core encapsulated in a silica shell, with respect to homogeneous silica or latex beads. These results were discussed in the frame of the various approaches currently used for modeling optical tweezing forces.  相似文献   

16.
徐升华  李银妹  楼立人 《中国物理》2006,15(6):1391-1397
The technique of optical tweezers has been improved a lot since its invention, which extends the application fields of optical tweezers. Besides the conventionally used Gaussian beams, different types of ring beams have also been used to form optical tweezers for different purposes. The two typical kinds of ring beams used in optical tweezers are the hollow Gaussian beam and Laguerre--Gaussian (LG) beam. Both theoretical computation and experiments have shown that the axial trapping force is improved for the ring beams compared with the Gaussian beam, and hence the trapping stability is improved, although the transverse trapping forces of ring beams are smaller than that of Gaussian beam. However, no systematic study on the trapping forces of ring beam has ever been discussed. In this article, we will investigate the axial and transverse trapping forces of different types of ring beams with different parameters systematically, by numerical computation in which the ray optics model is adopted. The spherical aberration caused by the refractive index mismatch between oil and water is also considered in the article. The trapping forces for different objectives that obey the sine condition and tangent condition are also compared with each other. The result of systematical calculation will be useful for the applications of optical tweezers formed by different types of ring beams.  相似文献   

17.
We investigate the optical trapping effect of high-order Laguerre-Gaussian (LG) beams acting on a dielectric sphere in Rayleigh regime. For LG beams with the azimuthal mode index l=0, it is found that under the same input power, the transverse trapping effect can be enhanced several times with increasing the radial mode index p, compared with that of the Gaussian beam; while its axial trapping effect is exactly the same as that of Gaussian beam, although the central trapping region reduces as p increases. For LG beams with l≥1, we find that the maximal transverse gradient forces increase with the increasing of p and the axial radiation forces reduces slightly, therefore an optimal choose on p and l is necessary for obtaining an optimal optical guiding. Our result is useful for analyzing the trapping efficiency of LG beams applied in micromanipulation technologies.  相似文献   

18.
Kawauchi H  Yonezawa K  Kozawa Y  Sato S 《Optics letters》2007,32(13):1839-1841
We calculated the optical trapping forces on a microscopic particle in the ray optics regime for the case where a radially polarized laser beam is applied. A higher axial trapping efficiency than for a circularly polarized doughnut beam was predicted due to the large p polarization component. Three-dimensional optical trapping was expected for particles with a larger index of refraction and for objectives with a smaller numerical aperture.  相似文献   

19.
周哲海  祝连庆 《中国物理 B》2015,24(2):28704-028704
Multiple optical trapping with high-order axially symmetric polarized beams(ASPBs) is studied theoretically,and a scheme based on far-field optical trapping with ASPBs is first proposed.The focused fields and the corresponding gradient forces on Rayleigh dielectric particles are calculated for the scheme.The calculated results indicate that multiple ultra-small focused spots can be achieved,and multiple nanometer-sized particles with refractive index higher than the ambient can be trapped simultaneously near these focused spots,which are expected to enhance the capabilities of traditional optical trapping systems and provide a solution for massive multiple optical trapping of nanometer-sized particles.  相似文献   

20.
Optical tweezers with a low numerical aperture microscope objective is used to manipulate the microspheres at the water-air interface. In this letter, we determine the optimal optical trap for the lateral manipulation of microspheres at a water-air interface. The experimental results show that the trapping force is influenced by the expansion of the trapping beam at the back aperture of the objective. The optimal filling ratio of 0.65 is suggested for lateral optical manipulation at the water-air interface. The lateral trapping forces at the water-air interface are theoretically investigated with the ray-optics model. The numerical results show that the lateral trapping forces can be changed by shrinking the diameter of the trapping laser beam. The numerical results are in accordance with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号