首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrene end-labeled double hydrophilic diblock copolymers, poly(N-isopropylacrylamide)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (Py-PNIPAM-b-POEGMA), were synthesized via consecutive reversible addition-fragmentation chain transfer polymerization using a pyrene-containing dithioester as the chain transfer agent. These diblock copolymers molecularly dissolve in pure methanol and water, but form well-defined and nearly monodisperse PNIPAM-core micelles in an appropriate mixture of them due to the cononsolvency of PNIPAM block. 1H NMR, laser light scattering, fluorescence spectroscopy, and transmission electron microscopy were employed to characterize the cononsolvency-induced PNIPAM-core micelles. When the volume fraction of water, phi water, in the methanol/water mixture is in the range of 0.5-0.8, the sizes of micelles are in the range of 20-30 nm in radius for Py-PNIPAM50-b- POEGMA18. At phi water = 0.5, the formed micelles possess the highest overall micelle density and the largest molar mass. The effects of varying the block lengths of Py-PNIPAM-b-POEGMA diblock copolymers on the structural parameters of PNIPAM-core micelles have also been explored. Although we can observe the immediate appearance of bluish tinge upon mixing the diblock copolymer solution in methanol with equal volume of water (phi water = 0.5), which is characteristic of the formation of micellar aggregates, the whole micellization process apparently takes a relatively long time to complete, as revealed by monitoring the time dependence of fluorescence emission spectra. The excimer/monomer fluorescence intensity ratios, IE/IM, continuously decrease with time and then reach a plateau value after approximately 20 min. The decrease of IE/IM after the initial formation of pseudo-equilibrium micelles should be ascribed to the structural rearrangement and further packing of PNIPAM segments within the micelle core, restricting the mobility of pyrene end groups and decreasing the probability of contact between them. Compared to the conventional cosolvent approach employed for the micellization of block copolymers in selective solvents, the reported cononsolvency-induced unimer-micelle-unimer transition of Py-PNIPAM-b-POEGMA in methanol/water mixtures has been unprecedented.  相似文献   

2.
A pyrene end-labeled double hydrophilic diblock copolymer, poly(2-(diethylamino)ethyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (Py-PDEA-b-PDMA), was synthesized by sequential monomer addition via oxyanionic polymerization using a 1-pyrenemethanol-based initiator. This diblock copolymer exhibits reversible pH-responsive micellization behavior in aqueous solution, forming PDEA-core micelles stabilized by the soluble PDMA block at neutral or alkaline pH. Taking advantage of the pyrene probe covalently attached to the end of the PDEA block, the pH-induced micellization kinetics of Py-PDEA-b-PDMA was monitored by stopped-flow light scattering using a fluorescence detector. Upon a pH jump from 4.0 to 9.0, both the scattered light intensity and excimer/monomer fluorescence intensity ratios (IE/IM) increase abruptly initially, followed by a more gradual increase to reach plateau values. Interestingly, the IE/IM ratio increases abruptly within the first 10 ms: a triple exponential function is needed to fit the corresponding dynamic trace, leading to three characteristic relaxation time constants (tau(1,fluo) < tau(2,fluo) < tau(3,fluo)). On the other hand, dynamic traces for the scattered light intensity can be well-fitted by double exponential functions: the resulting time constants tau(1,scat) and tau(2,scat) can be ascribed to formation of the quasi-equilibrium micelles and relaxation into their final equilibrium state, respectively. Most importantly, tau(1,scat) obtained from stopped-flow light scattering is in general agreement with tau(2,fluo) obtained from stopped-flow fluorescence. The fastest process (tau(1,fluo) approximately 4 ms) detected by stopped-flow fluorescence is ascribed to the burst formation of small transient micelles comprising only a few chains, which are too small to be detected by conventional light scattering. These nascent micelles undergo rapid fusion and grow into quasi-equilibrium micelles and then slowly approach their final equilibrium state. The latter two processes can be detected by both techniques.  相似文献   

3.
The tetrabutylammonium (TBA) salts of fatty acids, from dodecanoic acid (C12) to octacosanoic acid (C28), have been prepared by direct neutralization of the fatty acid by TBA hydroxide. Unexpectedly, all of these surfactants have been found to be soluble in water under the form of micelles at a sufficiently high temperature. For instance, the solubility of TBA octacosanoate in water is of about 7 wt % at 46 degrees C. Starting from TBA docosanoate, the aqueous solutions of the surfactants gelled below a certain temperature. The gelling temperature increased linearly with the fatty acid carbon number. Upon increasing temperature, the TBA octocosanoate showed a relatively complex phase behavior that has been investigated. The micellar solutions of these surfactants did not cloud at high temperatures, up to 98 degrees C, contrary to TBA alkylsulfates. The aggregation numbers of micelles of the various TBA alkylcarboxylates have been measured and found to be smaller than those for the maximum spherical micelle that a surfactant with the same alkyl chain length can form. The micelle micropolarity and microviscosity (as sensed by fluorescent probes) decreased and increased, respectively, with the fatty acid carbon number.  相似文献   

4.
We report on time-resolved EPR experiments of the photo-induced electron transfer from zinc-tetraphenylporphyrin (ZnTPP) to duroquinone (DQ) in cationic CTAC and neutral Triton X-100 micelles. The spin-polarized EPR spectra and their time-dependence indicate pronounced differences between the two micellar systems: In the neutral micelles, the lifetime of the spin-correlated radical pair is longer than in the charged micelles. In the CTAC system an unusual temperature dependence of the polarization pattern is observed. This can be attributed to the effects of both the microviscosity of the micellar interior and the macroviscosity of the bulk solution on the spin dynamics of the reactants located inside the micelles.  相似文献   

5.
佟振合    徐承柏 《化学学报》1988,46(1):30-37
研究了不同链长的β-萘甲酸烷基酯(An)在乙二醇-水(EG-H2O)和二甲基砜-水(DMSO-H2O)混合溶剂中的荧光光谱, 以及添加物(无机盐、长链饱和烷烃、糖淀粉)对An荧光的影响. 长链An在混合溶剂中很容易形成激基缔合物, 表明疏水作用促使长链分子相互簇集. 测定了不同链长的分子发生簇集的临界浓度和临界溶剂组成. 分别添加长链烷烃和糖淀粉都能引起激基缔合物的荧光强度减弱和单体荧光强度的增强, 表明An和长链烷烃共簇集, 与糖淀粉形成包结物. 研究了在簇集体中An形成激基缔合物的动力学和热力学, 测定了激基缔合物形成和解离速率常数、活化能和热焓的变化. 证明了簇集体中基态发色基团之间并不具有激基缔合物的构型, 在一定温度下, 簇集体会发生相变.  相似文献   

6.
利用核磁共振化学位移变化, 自旋-自旋弛豫和2D NOESY(two-dimensional nuclear Overhauser enhancement spectroscopy)研究了一系列新合成的双取代烷基苯磺酸盐的胶束化. 结果表明, 邻位取代的是正烷烃链, 间位取代的是支烷烃链. 而且, 邻位取代的烷烃链越长, 参与形成胶束疏水核表面层的亚甲基个数越多. 因此, 每个分子在饱和吸附的油水界面上的面积越大. 间位取代的分支链在胶束疏水核中堆积得没有邻位取代的正烷烃链紧密. 分支链越短, 堆积得越不紧密. 描述了胶束中分子的相对排列.  相似文献   

7.
采用荧光分光光度法,实验测定了聚苯乙烯磺酸钠在无盐和有盐的水溶液中,单体和激态缔合体的荧光发射光谱.结果表明:激态缔合体单体发射强度比I_E/I_M随外加盐种类、浓度和价态而变化.在相同盐浓度下,各体系的I_E/I_M次序为:KCl>NaCl>LiCl和CaCl_2>MgCl_2。 也研究了NaCl水溶液中聚电解质分子的荧光猝灭.结果表明:随外加盐浓度逐渐增大,聚电解质分子由类棒状向无规线团状转化,该状态有利于激态缔合体的形成.  相似文献   

8.
Dielectric behavior was examined for aqueous solutions of the betaine-type surfactants dodecyldimethylcarbobetaine (C(12)DCB), tetradecyldimethylcarbobetaine (C(14)DCB), cetyldimethylcarbobetaine (C(16)DCB), and oleyldimethylcarbobetaine (OleyDCB) as a function of frequency from 1.00 x 10(6) to 2.00 x 10(10) Hz (6.28 x 10(6) to 1.26 x 10(11) rad s(-1)) with changing surfactant concentration (c(D)). Rotational relaxation times (tau) of the zwitterionic headgroups of the surfactants in aqueous solutions of C(12)DCB and C(14)DCB, which form spherical micelles, are determined to be 0.26 and 0.30 ns, respectively. Values of tau for aqueous solutions of C(16)DCB and OleyDCB, which form threadlike micelles, are identical at 0.44 ns. The tau values of all micellar solutions are constant irrespective of c(D). The increase in tau with increasing alkyl chain length is assigned to an increase of molecular density at the micellar surface. The magnitude of the relaxation strength for the surfactant solutions increases in proportion to c(D) and is not so different from that of an aqueous solution of glycine betaine (GB), which has the same chemical structure as betaine-type surfactants with zwitterionic headgroups but never forms micelles. This finding suggests that the zwitterionic headgroup rotating on the micellar surface possesses a dipole moment with a magnitude essentially the same as that of GB in aqueous solutions.  相似文献   

9.
The aggregation behaviors and microenvironmental characteristics of five sodium tri-n-alkylbenzene sulfonates (STABS) micelles have been investigated by electron paramagnetic resonance (EPR) and steady-state fluorescence quenching (SSFQ) techniques. The results indicated that the micropolarity of STABS micelles was less sensitive to the increase of the alkyl chain length, and showed slight decrease with the increasing solution concentration. The microviscosity of STABS micelles increased with the increase of the long alkyl chain length, decreased with the increase of the short alkyl chain length, and exhibited little increase when increase the solution concentration. The salinity of added inorganic salt exhibited obvious effect on the decrease of micropolarity and increase of microviscosity of STABS. These results suggested that these different alkyl chains showed different effects on the micellization of STABS and the salinity's effect was even bigger.  相似文献   

10.
The fluorescence spectra of alkyl β-naphthoates with various chain lengths (An) in DMSO-H2O and ethylene glycol-water (EG-H2O) mixtures were studied. The β-naphthoates with short chain show monomer fluorescence only in both solvent mixtures, while fluorescence spectra of long chain alkyl β-naphthoates are dominated by excimer emission. Addition of long chain hydrocarbon or amylose resulted in the reduction of excimer emission and enhancement of monomer fluorescence. All these experimental results supported intermolecular aggregation of long chain alkyl β-naphthoates in poor solvents. The kinetic parameters of the formation and dissociation of excimer as well as fluorescence polarization in aggregates were measured. These data provided an insight into the characteristics of aggregates.  相似文献   

11.
应用表面张力法、NMR法和ESR法研究了全氟辛酸钠(SPFO)-十二烷基三甲基溴化铵(DTAB)混合体系水溶液胶束形成及混合胶束的微环境性质(微观粘度、微观极性等)。结果表明, 碳氟表面活性剂碳氟链和碳氢表面活性剂碳氢链之间具有强烈的相互作用, DTAB与SPFO在水溶液中形成混合胶束。DTAB与SPFO混合体系的表面活性高于单一的DTAB或SPFO, 混合体系cmc较单一的DTAB和SPFO低。DTAB与SPFO混合胶束的微观粘度较DTAB胶束的大, 而微观极性较DTAB的小。  相似文献   

12.
Micellization of a series of newly synthesized dialkyl benzene sulfonates was studied using proton chemical shift changes, spin-lattice and spin-spin relaxation NMR spectroscopy, and two-dimensional nuclear Overhauser enhancement spectroscopy (2D NOESY). The o-substituted chains are normal alkyl chains with varying lengths, and the m-substituted ones are branched alkyl chains. The results showed that the longer the o-substituted normal alkyl chain, the more the methylene groups participated in the formation of the rigid surface layers of the hydrophobic micellar cores. Consequently, the larger was the area per molecule adsorbed on the interface between oil and water at saturation. The branched m-substituted alkyl chains of the dialkyl benzene sulfonates were less tightly packed than the o-substituted normal alkyl chains in the hydrophobic micellar cores. The shorter the m-substituted branched alkyl chains, the looser they were packed in the hydrophobic micellar cores. The relative arrangement of the surfactant molecules in the micelles was elucidated.  相似文献   

13.
Solubilization of benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, and n-pentylbenzene into the micelles of octaethylene glycol monotetradecyl ether (C(14)E(8)) was studied, where equilibrium concentrations of all the solubilizates were determined spectrophotometrically at 298.2, 303.2, and 308.2 K. The concentration of the above solubilizates except benzene remained constant below the critical micelle concentration (cmc) and increased linearly with an increase in C(14)E(8) concentration above the cmc, whereas benzene concentration was found to remain constant over the whole concentration range of C(14)E(8). The Gibbs energy change (DeltaG(0)) for their solubilization was evaluated by the partitioning of the solubilizates between the aqueous phase and the micellar phase because of the large aggregation number of the C(14)E(8) micelle. Furthermore, enthalpy and entropy changes for their solubilization were evaluated from the temperature dependence of the DeltaG(0) values. From these thermodynamical parameters and the change in absorption spectra of the solubilizates due to their incorporation into the micelles, the solubilization site was found to move into the inner core of the micelle with increasing alkyl chain length of the solubilizates.  相似文献   

14.
In this report we have studied micellization process of anionic, cationic and non-ionic surfactants using N,N-dimethylaminonapthyl-(acrylo)-nitrile (DMANAN) as an external fluorescence probe. Micropolarity, microviscosity, critical micellar concentration of these micelles based on steady state absorption and fluorescence and time resolved emission spectroscopy of the probe DMANAN show that the molecule resides in the micelle-water interface for ionic micelles and in the core for the non-ionic micelle. The effect of variation of pH of the micellar solution as well as fluorescence quenching measurements of DMANAN provide further support for the location of the probe in the micelles.  相似文献   

15.
The fluorescence anisotropy decay dynamics of the fluorescent probe Coumarin-153 (C153) have been investigated in two neutral micelles, Triton-X-100 (TX-100) and Brij-35 (BJ-35), at different temperatures and analyzed on the basis of the well-known two-step model. Because steady-state fluorescence spectra of the above probe do not show any noticeable changes with respect to temperature, for either of the studied micelles, suggests a similar polarity in the microenvironment around the probe at all the temperatures studied. The anisotropy results indicated that, for both the micelles, the fluidity inside the Palisade layer increases with temperature. However, the temperature effect on the anisotropy decay is relatively more pronounced in TX-100 than in BJ-35. It is inferred that the temperature effect on the anisotropy decay in the BJ-35 micelle is mainly due to the thermal effect on the microviscosity in the micellar phase. In the case of TX-100, the results indicate that, along with the above thermal effect, an additional effect is observed due to the increased size and hydration of the micelle with temperature, with the result being that the fluorescence anisotropy decay in TX-100 is more sensitive to temperature than in BJ-35. In the TX-100 micelle, our studies show that with an increase in temperature, even though the micellar size increases substantially, the distance of the probe from the micellar core does not increase that significantly. Thus, with increasing temperature, the probe undergoes a relative migration toward the micellar core to avoid the increased hydration in the micellar Palisade layer.  相似文献   

16.
The kinetics and mechanism of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt, p-toluidine hydrochloride (PTHC), were investigated by stopped-flow with light scattering detection. Spherical sodium dodecyl sulfate (SDS) micelles transform into short ellipsoidal shapes at low salt concentrations ([PTHC]/[SDS], chi(PTHC)=0.3 and 0.4). Upon stopped-flow mixing aqueous solutions of spherical SDS micelles with PTHC, the scattered light intensity gradually increases with time. Single exponential fitting of the dynamic traces leads to characteristic relaxation time, tau(g), for the growth process from spherical to ellipsoidal micelles, and it increases with increasing SDS concentrations. This suggests that ellipsoidal micelles might be produced by successive insertion of unimers into spherical micelles, similar to the case of formation of spherical micelles as suggested by Aniansson-Wall (A-W) theory. At chi(PTHC) > or = 0.5, rod-like micelles with much higher axial ratio form. The scattered light intensity exhibits an initially abrupt increase and then levels off. The dynamic curves can be well fitted with single exponential functions, and the obtained tau(g) decreases with increasing SDS concentration. Thus, the growth from spherical to rod-like micelles might proceed via fusion of spherical micelles, in agreement with mechanism proposed by Ikeda et al. At chi(PTHC)=0.3 and 0.6, the apparent activation energies obtained from temperature dependent kinetic studies for the micellar growth are 40.4 and 3.6 kJ/mol, respectively. The large differences between activation energies for the growth from spherical to ellipsoidal micelles at low chi(PTHC) and the sphere-to-rod transition at high chi(PTHC) further indicate that they should follow different mechanisms. Moreover, the sphere-to-rod transition kinetics of sodium alkyl sulfate with varying hydrophobic chain lengths (n=10, 12, 14, and 16) are also studied. The longer the carbon chain lengths, the slower the sphere-to-rod transition.  相似文献   

17.
Abstract— A previous study on the electronic spectroscopy of p -N,N-dialkylaminobenzylidenemalononitrile, 1, has been extended to a larger variety of organic solvents and to micelles of ionic and nonionic surfactants. By comparing the fluorescence emission (λF and φ) of 1 in micelles and in homogeneous organic solvents, the effective polarity and the microviscosity of the micellar environments of potassium dodecanoate, sodium dodecyl sulfate, cetyltrimethylammonium bromide and Triton X-100 micelles have been determined to be 40, 40, 36 and 28, respectively and 23, 31, 34 and 28 cP, respectively. These results indicate that the fluorescence probe is located in the micelle–water interface of a micelle and this region of a micelle is polar and viscous. 1 has also been studied in different surfactants with varying surfactant concentrations. The φ of 1, a microviscosity gauge for micellar aggregates, remains unchanged at the critical micelle concentrations of various surfactants, but decreases at much lower surfactant concentrations. This is attributable to the formation of premicellar aggregates of surfactant molecules below their critical micelle concentrations.  相似文献   

18.
为了研究不同疏水化修饰的聚N 异丙基丙烯酰胺(PNIPAM)高分子的水溶液性质,合成了一系列N 异丙基丙烯酰胺(NIPAM)和长链丙烯酸酯及丙烯酸胆固醇酯的共聚物.利用表面张力法证实了该类共聚物在室温下都具有良好的表面活性,在水溶液中能够形成胶束.利用荧光探针法,研究了共聚物的低温临界溶液温度(LowerCriticalSolutionTemperature,LCST),发现,随着丙烯酸酯碳链及其配比(摩尔投料比)的变化,共聚物的LCST变化不明显,但它们都比均聚的PNIPAM要低;利用荧光偏振法研究了共聚物在水溶液中的微粘度,发现其微粘度不随共聚物中丙烯酸酯链长和配比的变化而变化,说明了该类共聚物在室温下能够形成相类同的胶束内核.  相似文献   

19.
The solubilization of n-alkylbenzenes (benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, n-pentylbenzene, n-hexylbenzene) into an aqueous micellar solution of sodium cholate was carried out. Solubilizate concentrations at equilibrium were determined spectrophotometrically at 293.2, 298.2, 303.2, 308.2, and 313.2 K. The first stepwise association constants (K(1)) between solubilizate monomers and vacant micelles were evaluated from the equilibrium concentrations and found to increase with increasing hydrophobicity of the solubilizate molecules. From the Gibbs energy change for solubilization at different micelle aggregation numbers and from the molecular structure of the solubilizates, the function of sodium cholate micelles as solubilizer was discussed. Enthalpy and entropy changes of solubilization were calculated from the temperature dependence of the K(1) values, and the solubilization was found to be enthalpy-driven for the solubilizates with shorter alkyl chains. The results obtained were also compared with those for conventional aliphatic micelles.  相似文献   

20.
The influence of polyethylene oxide (PEO) on the rheological properties of equimolar wormlike micellar solutions of hexadecyltrimethylammonium chloride (HTAC) and sodium salicylate (NaSal) is investigated, above the concentration where a micellar entanglement network is formed. PEO is known to have a temperature-dependent binding affinity for HTAC micelles. The influence of temperature, PEO concentration, and HTAC concentration is explored. Within the concentration and temperature range examined (25-100 mM HTAC and 25-50 degrees C), HTAC/NaSal solutions exhibit rheological characteristics of an entanglement network. Application of transient network theory provides information in the form of the plateau modulus, G(infinity)', the terminal viscoelastic relaxation time, tau(R), the reptation time, tau(rep), the micellar breaking time, tau(br), the mean micellar length, L , and the entanglement length, l(e). Consistent with literature data, increase of HTAC concentration results in an evolution from slow-breaking to fast-breaking behavior, accompanied by an increase in G(infinity)' and tau(rep), and decreases in tau(R), and tau(br), l(e) and L . Addition of PEO results in a substantial decrease in G(infinity)' (increase in l(e)), and corresponding increases in tau(R) and L . These observations are consistent with the idea that binding of HTAC micelles to PEO in aqueous solution decreases the number of surfactant molecules available to contribute to the entanglement network of wormlike micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号