首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超导线圈的制冷问题是高温超导(HTS)风力发电机研究中的一个重点,尤其是在使用接触式制冷的超导电机中,现有制冷机的制冷功率普遍较低,这就要求超导线圈的交流损耗不能太大。在超导风力发电机中,为了减少交流损耗,通常将超导线圈放置在转子中作为励磁线圈使用。在定子齿部材料为铁磁材料的旋转电机中,气隙磁场会发生畸变,转子旋转时超导线圈处会出现交变磁场,产生交流损耗。通过有限元软件仿真,以使用接触式制冷系统的2.5MW高温超导风力发电机为研究对象,证明使用铁磁材料的定子齿部结构是造成超导线圈处交变磁场和交流损耗的主要原因。采用均一化模型计算交流损耗,提出两种减小交变磁场和交流损耗的结构优化方法,即定子齿部采用非磁性材料和在气隙处增加磁屏蔽层。  相似文献   

2.
3.
4.
铋系高温超导带材在工频交变磁场下的交流损耗   总被引:1,自引:0,他引:1  
结合高频超导体的晶粒特性,研究77K温度铋系高温超导带材在工频交变磁场下的交流损耗;结果与Bean模型所预言的损耗结果一致且损耗与频率成正比,说明损耗以磁滞损耗为主,涡流损耗和耦合损耗可以忽略不计。  相似文献   

5.
超导线圈交流损耗的测量,能为研究超导线圈交流损耗提供重要方法,并对应用中超导线圈的优化提供重要依据。通过测量电流电压得到功率、再对时间积分的方法,来计算交流损耗,实验中可采用电容补偿降低电源功率负荷,电感补偿降低采集信号噪音,调整采样周期进一步提高采集效率和信噪比等方法来进行。将超导单带在88 Hz及小线圈在90 Hz的实验结果,与理论公式、经典锁相放大器测试结果对比,实验结果中交流损耗从小电流到大电流的差别为17%~1%,证明用该方法测量超导线圈交流损耗,准确、合理。  相似文献   

6.
《低温与超导》2021,49(8):26-29,57
运用实验的方法,系统研究了在堆叠与并列两种排布方式下YBCO和Bi2223两种高温超导电缆关于电流方向的交流损耗特性,并进行了分析比较。研究表明,在堆叠的情况下,反向电流的交流损耗大于同向电流的交流损耗,两者保持一定的比列;并列的情况下,同向电流的交流损耗大于反向电流的交流损耗,且随着电流的增大,两者的差异在逐渐减小。在堆叠的情况下,YBCO同向电流的交流损耗和反向电流交流损耗的差异远大于Bi2223。  相似文献   

7.
REBCO高温超导带材在传输电流时会产生交流损耗,从而影响超导设备的稳定运行。基于麦克斯韦方程组,结合超导体的非线性E-J关系,使用H方法推导求解超导体交流损耗的数值计算公式,利用COMSOL Multiphysics有限元仿真软件建立二维轴对称模型并进行计算。结果表明,在通入交变电流后,超导带材由于抗磁性会出现部分零磁通区域,随着传输电流幅值、磁通蠕变系数、频率及环境温度的增大,磁通穿透深度逐渐增大,零磁通区域逐渐减小,传输电流主要分布于带材两端。增大传输电流幅值、磁通蠕变系数以及环境温度中任一变量,交流损耗随之增大,而交流损耗随频率的增大而减小。合理选取超导带材参数可有效降低交流损耗,保障超导设备安全运行。  相似文献   

8.
高温超导复合缆线的运行温度直接决定其载流性能,超导带材交流损耗计算的准确性对缆线的温升计算至关重要.面向具有铜骨架和双层高温超导带材结构的高温超导复合缆线,通过改进利兹线(Litz-wire)涡流损耗计算模型,将导电层作为利兹线结构中由多股线按一定节距扭转的束级结构的并联,分别计算了 49.9 Hz和60 Hz下复合缆...  相似文献   

9.
高温超导带材在磁场中传输交变电流时,将受到电磁力的作用而产生机械振动,振动对带材的交流损耗将产生影响.本文讨论了振动情况下交流损耗的测量方法,在平行于带面的直流磁场下,测量了Bi-2223/Ag高温超导带材在不同振动情况下的交流损耗.结果显示:当传输电流频率偏离样品的共振频率时,振动对带材的交流损耗影响不大;只有当电流频率在共振频率附近时,样品产生剧烈振动,交流损耗才有明显的增加;另外,带材振动时的交流损耗随频率变化曲线的斜率比不振动时略有增加.  相似文献   

10.
高温超导体的交流损耗直接影响超导电力装置的运行成本和稳定性,是判断超导电力设备设计是否合理的重要特性之一.在阐述准各向同性高温超导股线结构特点的基础上,首先对准各向同性高温超导股线的交流损耗和磁滞损耗进行仿真研究,利用有限元软件Comsol Multiphysics分析了交流背景磁场下的损耗,然后在对光纤布拉格光栅(optical fiber Bragg grating,简称FBG)波长与损耗关系标定的基础上,使用光纤布拉格光栅测量交流背景磁场下的交流损耗.理论计算与实验结果相吻合,表明在工频和液氮温度下股线的交流损耗以磁滞损耗为主.  相似文献   

11.
根据10 kV紧凑型三相同轴高温超导电缆参数,在COMSOL Multiphysics有限元软件中建立电缆的二维仿真模型,基于H方程求解了电缆在额定工况稳态运行时以及不同传输电流下的磁场分布和交流损耗;在此基础上,分析了绕制半径、相间距离以及相间相对角度对交流损耗的影响.仿真结果表明,各相超导层绕制半径越小,相间距离越小,各相产生的交流损耗越小;三相的交流损耗有随着超导层结构周期性变化的特点,且当相间相对角度为0°时,各相产生的交流损耗最大.  相似文献   

12.
在高温超导的电力应用中,如超导电机、变压器等,多数情况下,高温超导带材在通以交流传输电流的同时还处于交变磁场中。此时,超导体的交流损耗不仅依赖于磁场的大小,还与磁场相对于超导带面的取向有关。本文在77K及工频50Hz情况下,实验研究了单根多芯Bi2223/Ag高温超导带及两带并联时的交流损耗随着外磁场与带面夹角的变化情况;以及交流磁场对临界电流的影响情况;并对单根带及两带并联的实验结果进行了比较与分析。  相似文献   

13.
交流损耗的数值计算对于高温超导带材具有重要的现实意义。应用有限元软件模拟仿真超导体部分计算求出不同排列下的交流损耗,与实验结果以及Norris公式的计算结果相比较,得到的仿真结果符合较好。结果说明圆筒形的排列能够有效地减少交流损耗。  相似文献   

14.
本文研究以多芯不锈钢加强Bi2223/Ag带材绕制的45 kVA单相高温超导变压器的交流损耗特性.变压器绕组置于具有室温孔径的环形玻璃钢杜瓦内,铁芯穿过杜瓦室温孔径以保证铁芯与绕组分离并工作于室温环境.在77 K和工频下,基于Bean模型和绕组中的磁场分布计算了绕组的交流损耗,计算结果与传统电测法和热测法测量的变压器交流损耗结果一致;表明在77K绕组中交流损耗以磁滞损耗为主,涡流损耗和耦合损耗可以忽略不计.  相似文献   

15.
16.
超导电缆与常规电缆在电磁特性上有很大的差异。因此,并网运行前需要对其各方面性能进行试验测试,确保能够在电网中安全稳定运行。文中介绍了基于LabVIEW的高温超导电缆性能测试平台的实现方法,主要完成超导电缆的交直流性能测试试验和交流损耗测量试验。  相似文献   

17.
在无限长堆叠带材模型的基础上对高温超导电流引线的交流损耗建立了新的计算模型,即正十二边形骨架计算模型.由于正十二边形对称性,通过建立合适的坐标系,对坐标进行旋转即可求出每堆带材处的磁场.使用matlab编程计算并得出一系列电流下的交流损耗值,通过将所得数据绘成图形,比较了不同电流下穿透深度及交流损耗的大小.然后搭建实验平台,测量了不同频率下电流引线的交流损耗,并将理论与实验对比,得到较好的一致性.  相似文献   

18.
基于H方程求解了110 kV/3 kA高温超导电缆在不同工况下运行时的磁场分布和交流损耗,在此基础上分析屏蔽层感应电流的变化情况,并探究导电层和屏蔽层采用组合超导带材的可行性。结果表明,随着传输电流的增大,屏蔽层感应电流发生了畸变,电缆总体的交流损耗显著增加。当导电层采用77 K下临界电流为210 A的超导带材时,电缆可显著降低大约48%的交流损耗。  相似文献   

19.
本文利用振动样品磁强计测量了Bi2 2 2 3/Ag短样的磁滞回线 ,通过磁滞回线的面积求得Bi2 2 2 3/Ag超导体中的损耗 ,讨论了磁场加载速率和幅值对超导体交流损耗的影响 ,并将实验结果与理论预期值进行了比较 .目前国内外高温超导体的研究主要集中在工频附近 ,而利用VSM研究 77K温度下Bi2 2 2 3/Ag超导带材的超低频交流损耗的文献据我们所知还没有发现 ,本文给出了这方面初步的实验结果 .样品BS4按PIT法制备 ,芯数为 37,尺寸为 0 .0 2×0 .4 82× 0 .982mm3,用四引线法测得样品的临界电流为 19A( 77K ,0T) .  相似文献   

20.
在许多超导电力设备的应用中,超导绕组的机械性能和电流过载能力是关乎设备运行安全性和可靠性的重要现实问题。利用铜线(或铜带)与高温超导带材平行绕制的方法是解决这一问题的可行方案之一。但这种方案有可能带来额外的交流损耗。为了研究这一问题,制作了两个尺寸相同的超导绕组,绕组内径70mm,外径90mm,高45mm,其中一个绕组由超导带与铜带并绕而成,另一个则由超导带材单独绕制而成。两个样品使用的超导带材均为一代Bi-2223/Ag高温超导带,宽4.6mm,厚0.22mm;铜加强带宽5mm,厚0.1mm。采用了卡路里法对比研究了两个样品的交流损耗。实验结果显示加入铜带没有明显增加超导绕组的交流损耗。因此,超导绕组中并绕铜带不失为一种有效提高超导绕组机械性能和过载能力的方法,在超导电力设备中有一定的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号