首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co2Z hexaferrite Ba3Co2Fe24O41 was prepared by a mixed oxalate co-precipitation route and the standard ceramic technology. XRD studies show that at T<1300 °C different ferrite phases coexist with the M-type hexaferrite as majority phase between 1000 and 1100 °C and the Y-type ferrite at 1230 °C. The Z-type material has its stability interval between 1300 and 1350 °C. Both synthesis routes result in almost single-phase Z-type ferrites after calcination at 1330 °C, intermediate grinding and sintering at 1330 °C. The permeability of Co2Z-type ferrite of about μ=20 is stable up to several 100 MHz, with maximum losses μ′′ around 700 MHz. Addition of 3 wt% Bi2O3 as sintering aid shifts the temperature of maximum shrinkage down to 950 °C and enables sintering of Z-type ferrite powders at 950 °C. However, the permeability is reduced to μ=3. It is shown here for the first time that Co2Z ferrite is not stable under these conditions; partial thermal decomposition into other hexagonal ferrites is found by XRD studies. This is accompanied by a significant decrease of permeability. This shows that Co2Z hexagonal ferrite is not suitable for the fabrication of multilayer inductors for high-frequency applications via the low-temperature ceramic cofiring technology since the material is not compatible with the typical process cofiring temperature of 950 °C.  相似文献   

2.
By spin-spray ferrite plating, an aqueous process, we prepared ZnxFe3−xO4 (0?x?0.97) films at 90 °C on polyimide and glass substrates, on which complex permeability (μ=μ′–jμ″) was measured. As Zn content x increases from 0 to 0.70 static permeability, μs, increases from 14 to 119, but natural resonance frequency, fr, reduces from 1 GHz to 200 MHz. This is because magnetic anisotropy field decreases more rapidly than saturation magnetization. With increasing x DC electric resistivity, ρ, increases, exceeding 50 Ω cm (a measure of the lower limit for the high-frequency application) when x>0.15. Film with x=0.70 has relatively high μ′≈119 and μ″=0 up to 20 MHz, and is promising to be used as MHz core inductors. Film with x=0.36 has relatively high μ′=80 and μ″=0 up to 100 MHz, and it may be used as inductors at the ten MHz range and noise suppression sheets at the hundred MHz range.  相似文献   

3.
Polycrystalline manganese-zinc ferrite with lithium substitution of composition Li0.5xMn0.4Zn0.6−xFe2+0.5xO4 (0.0≤x≤0.4) was prepared by the usual ceramic method. X-ray diffraction analysis confirmed that the samples have a spinel structure and are of single phase for some values of Li content. Lithium doping considerably modifies saturation magnetization since its value increases from 57.5 emu/g for x=0.0 to 82.9 emu/g for x=0.4. Lithium inclusion increases the real permeability (over 1 MHz) while the natural resonance frequency shifts to lower values as the fraction of Li increases. These ferrites show good electromagnetic properties as absorbers in the microwave range of 1 MHz - 1 GHz.  相似文献   

4.
We have studied sub-stoichiometric Ni-Cu-Zn ferrites with iron deficiency (i.e., <50mol% Fe2O3) of composition Ni0.20Cu0.20Zn0.60+zFe2−zO4−(z/2) with 0≤z≤0.06. The temperature of maximum shrinkage rate is shifted from T=1000 °C for z=0 towards lower temperatures down to T=900 °C for a sub-stoichiometric ferrite with z=0.02. Dense samples are obtained after firing at 900 °C for z>0 only. Sub-stoichiometric compositions (z>0) do not form single-phase spinel ferrites after sintering at 900 °C, but rather represent mixtures of CuO and a stoichiometric ferrite with slightly modified composition. The formation of small amounts of CuO at grain boundaries is demonstrated by XRD and SEM. The permeability is increased from μ=80 for stoichiometric ferrites (z=0) to μ=660 for z=0.02. The formation of CuO during sintering of sub-stoichiometric ferrites supports densification and is a prerequisite for low temperature firing of multilayer inductors. Addition of 1 wt% Bi2O3 as liquid phase sintering aid is required to provide sufficient densification of the stoichiometric ferrite (z=0) at 900 °C. Addition of 0.37 wt% Bi2O3 to a sub-stoichiometric ferrite (z=0.02) results in dense samples after firing at 900 °C; however, the microstructure formation is dominated by heterogeneous grain growth.  相似文献   

5.
Li0.5−x/2CuxFe2.5−x/2O4 (where x=0.0-1.0) ferrites have been prepared by solid-state reaction. X-ray diffraction was used to study the structure of the above investigated ferrites at various sintering temperatures. Samples were sintered at 1000, 1100 and 1200 °C for 3 h in the atmosphere. For the sintering temperature of 1000 °C, Li0.5−x/2CuxFe2.5−x/2O4 undergoes cubic to tetragonal transformation for higher Cu content. However, for the sintering temperature of 1100 and 1200 °C, X-ray diffraction patterns are mainly characterized by fcc structure, though presence of tetragonal distortion was found by other temperature dependence of initial permeability curves. The lattice parameter, X-ray density and bulk density were calculated for different compositions. Curie temperature was measured from the temperature dependence of initial permeability curves. Curie temperatures of Li-Cu mixed ferrites were found to decrease with the increase in Cu2+ content due to the reduction of A-B interaction. As mentioned earlier, temperature dependence of initial permeability curves was characterized by tetragonal deformation for the samples containing higher at% of Cu. The complex initial permeability has been studied for different samples. The B-H loops were measured at constant frequency, f=1200 Hz, at room temperature (298 K). Coercivity and hysteresis loss were estimated for different Cu contents.  相似文献   

6.
Pr3+-doped Ni-Zn ferrites with a nominal composition of Ni0.5Zn0.5PrxFe2−xO4 (where x=0-0.08) were prepared by a one-step synthesis. The magnetic and dielectric properties of the as-prepared Ni-Zn ferrites were investigated. X-ray diffraction data indicated that, after doping, all samples consisted of the main spinel phase in combination of a small amount of a foreign PrFeO3 phase. The lattice constants of the ferrites initially increased after Pr3+ doping, but then became smaller with additional Pr3+ doping. The addition of Pr3+ resulted in a reduction of grain size and an increase of density and densification of the as-prepared samples. Magnetic measurement revealed that the saturation magnetization of the as-prepared ferrites, Ms, decreased, while the coercivity, Hc, increased with increasing substitution level, x, and the Curie temperature, Tc, kept a rather high value, fluctuating between 308 and 320 °C. Both the real and imaginary parts of permeability of the ferrites decreased slightly after Pr3+ doping. However, the natural resonance frequency shifted towards higher frequency from 13.07 to 36.17 MHz after the addition of Pr3+, driving the magnetic permeability to much higher frequency, reaching the highest value (36.17 MHz) when x=0.04. Introduction of Pr3+ ions into the Ni-Zn ferrite reduced the values of the dielectric loss tangent, especially in the frequency range of 1-400 MHz. However, the magnitude of dielectric loss of the samples doped with different amounts of Pr3+ raised little.  相似文献   

7.
Cu substituted Ni-Li spinel ferrites were prepared by a conventional sol-gel auto-combustion method. The structure, surface morphology, dielectric and magnetic properties were investigated by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, impedance spectroscopy and vibrating sample magnetometer, respectively. X-ray diffraction studies reveal the single phase spinel structure of the ferrites and the crystallite size varies from 23 to 35 nm. Incorporation of Cu in the Ni-Li ferrites increases the grain size. The dielectric parameters such as ε´, ε′′, loss tan δ and ac conductivity (σac) have been measured for the annealed samples in the temperature range from 35 to 200 °C and over the frequency range from 101 to 107 Hz. The saturation magnetization and coercivity show a dependence on the composition and microstructure. The values of saturation magnetization vary from 25.6 to 33.6 emu/g with increase in x for samples annealed at 600 °C. The values of the coercivity increase from 170 to 203 Oe with increase in x.  相似文献   

8.
Microwave-Hydrothermal (M-H) method has been successfully used for the synthesis of nanocrystalline Mn-Zn ferrites which are used for high-frequency applications. As synthesized powders were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The nanopowders were annealed at 600 °C/20 min using the microwave sintering method. The frequency dependence of dielectric constant (ε′) was measured in the range of 10 Hz-1.3 GHz and initial permeability (μi) was measured in the range of 10 Hz-1 MHz. The total power loss (Pt) was measured on the annealed samples at 100 kHz and 200 mT condition. Conductor-embedded-ferrite transformers were fabricated and output power (Po), efficiency (η) and temperature rise (ΔT) were measured at sinusoidal voltage of 25 V at 1 MHz. The transformer efficiency (η) was found to be high and surface rise of temperature (ΔT) is very low.  相似文献   

9.
We present the results of the effect of Al substitution on the magnetic and electrical properties of Li0.2Zn0.6Fe2.2−xAlxO4 ferrites (0.0≤x≤0.5) prepared by the standard ceramic technique. The characterization has been performed using XRD, SEM, magnetic and dielectric response in frequency. XRD analysis confirms that the system exhibits polycrystalline single phase cubic spinel structure only for low dopant content. Doping decreases the dielectric loss tangent and the ferrite conductivity in more than two orders of magnitude in the whole analyzed frequency range. Attenuation has a maximum intensity (86 dB) near 90 MHz for x=0.4. The wider bandwidth at 20 dB (94.6 MHz) is for x=0.3.  相似文献   

10.
The samples Ni1+xyZnyTix Fe2−2xO4; y=0.1, 0.0≤x≤0.5 were prepared in a single-phase spinel structure as indicated from X-ray analysis. Electrical conductivity and dielectric measurements at different temperatures from 300 K to 600 K in the frequency range from 42 Hz to 5 MHz have been analyzed. The relation of conductivity with temperature revealed a semiconductor to semimetallic behavior as Ti4+ concentration increases. The conduction mechanism depends mainly on the valence exchange between the different metal ions in the same site or in different sites. The dielectric constant as a function of temperature and frequency showed that there is a strong dependence on the compositional parameter x. The electrical modulus has been employed to study the relaxation dynamics of charge carriers. The result indicates the presence of correlation between motions of mobile ion charges. The activation energies extracted from M′(ω) and M″(ω) peaks are found to follow the Arrhenius law. The electrical conductance of the samples found to be dependent on the temperature and frequency.  相似文献   

11.
Single-phase M-type hexagonal ferrites Sr1−xLaxFe12O19 (0≤x≤1) were prepared by a ceramic route. The stability limits of the ferrite phases were determined with a combination of various microscopy techniques, electron-probe micro-analysis, powder X-ray diffraction and thermal analysis. SrFe12O19 (x=0) is stable up to 1420 °C, whereas LaFe12O19 (x=1) exists between 1360 and 1400 °C only. The lattice parameters of Sr1−xLaxFe12O19 exhibit a linear variation with x, i.e. a0 slightly increases and c0 decreases with x, leading to a decrease of the unit cell volume with x. The saturation magnetization at T=5 K decreases with increasing La concentration. Room temperature Mössbauer analysis shows that the Fe3+/Fe2+ valence change occurs in the 2a sites for the whole composition range.  相似文献   

12.
Magnetoplumbite-type (M-type) hexagonal strontium ferrite particles were synthesized via sol-gel technique employing ethylene glycol as the gel precursor at two different calcination temperatures (800 and 1000 °C). Structural properties were systematically investigated via X-ray diffraction (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), photoluminescence spectrophotometry and superconducting quantum interference device magnetometer. XRD results showed that the sample synthesized at 1000 °C was of single-phase with a space group of P63/mmc and lattice cell parameter values of a=5.882 Å and c=23.048 Å. EDS confirmed the composition of strontium ferrite calcined at 1000 °C being mainly of M-type SrFe12O19 with HRTEM micrographs confirming the ferrites exhibiting M-type long range ordering along the c-axis of the crystal structure. The photoluminescence (PL) property of strontium ferrite was examined at excitation wavelengths of 260 and 270 nm with significant PL emission peaks centered at 350 nm being detected. Strontium ferrite annealed at higher temperature (1000 °C) was found to have grown into larger particle size, having higher content of oxygen vacancies and exhibited 83-85% more intense PL. Both the as-prepared strontium ferrites exhibited significant oxygen vacancies defect structures, which were verified via TGA. Higher calcination temperature turned strontium ferrite into a softer ferrite.  相似文献   

13.
A series of single phase W-type Sr3−xCexFe16O27 (x=0, 0.02, 0.04, 0.06, 0.08, 0.10) hexagonal ferrites prepared by the Sol-Gel method was sintered at 1050 °C for 5 h. The X-ray diffraction analysis reveals that all the samples belong to the family of W-type hexagonal ferrites. The c/a ratio falls in the range of W-type hexagonal ferrites. The grain size was measured by SEM varies from 0.7684 to 0.4366 μm which shows that the Ce3+ substituted samples have smaller grain size than pure ferrite Sr3Fe16O27 which results from the difference in ionic radii of Ce3+ (1.034 Å) and Sr2+ (1.12 Å). The room temperature resistivity of the present samples varies from 6.5×108 to 272×108 Ω-cm. The coercivity increases from 1370 to 1993 Oe which is consistent with the decrease in grain size. The coercivity values indicate that the present samples fall in the range of hard ferrites. The large value of Hc may be due to domain wall pinning at the grain boundaries.  相似文献   

14.
NiFe2O4 nanoparticles were synthesized by the polyacrylamide gel method with acrylamide as the monomer and N,N′-methylenediacrylamide as lattice agent. The average crystallite sizes of the nickel ferrites annealed at 500, 600 and 800 °C are about 10, 30 and 50 nm, respectively. Ferrite-polystyrene composites were made by hot pressing, and microwave-absorbing properties of the composites with different contents of 35, 45, 55 and 65 wt% ferrite were investigated by testing complex permeability and complex permittivity in the X-band (8.2-12.4 GHz) frequency range. All the parameters, ε′, ε″, μ′ and μ″, increase with increasing ferrite content. The reflection losses were calculated based on a model of a single-layered plane wave absorber backed by a perfect conductor. The composite with 65 wt% ferrite content shows a minimum reflection loss of −13 dB at 11.5 GHz with a −10 dB bandwidth over the extended frequency range of 10.3-13 GHz for an absorber thickness of 2 mm.  相似文献   

15.
Structural and magnetic properties of Cu substituted Ni0.50−xCuxZn0.50Fe2O4 ferrites (where x=0.0-0.25) prepared by an auto combustion method have been investigated. The X-ray diffraction patterns of these compositions confirmed the formation of the single phase spinel structure. The lattice parameter increases with the increase in Cu2+ content obeying Vegard's law. The particle size of the starting powder compositions varied from 22 to 72 nm. The theoretical density increases with increase in copper content whereas the Néel temperature decreases. The bulk density, grain size and permeability increases up to a certain level of Cu2+ substitution, beyond that all these properties decrease with increase in Cu2+ content. The bulk density increases with increase in sintering temperatures up to 1250 °C for the parent composition, while for substituted compositions it increases up to 1200 °C. Due to substitution of Cu2+, the real part of the initial permeability increases from 97 to ∼390 for the sample sintered at 1100 °C and from 450 to 920 for the sample sintered at 1300 °C. The ferrites with higher initial permeability have a relatively lower resonance frequency, which obey Snoek's law. The initial permeability strongly depends on average grain size and intragranular porosity. The saturation magnetization, Ms, and the number of Bohr magneton, n(μB), decreases up to x=0.15 due to the reduction of the A-B interaction in the AB2O4 spinel type ferrites. Beyond that value of x, the Ms and the n(μB) values are enhanced. The substitution of Cu2+ influences the magnetic parameters due to modification of the cation distribution.  相似文献   

16.
Mixed manganese-zinc and nickel-zinc ferrites of composition Mn0.2Ni0.8−xZnxFe2O4 where x=0.4x=0.4, 0.5 and 0.6 have been synthesized by the citrate precursor technique. Decomposition of the precursor at temperatures as low as 500 °C gives the ferrite powder. The ferrites have been investigated for their electrical and magnetic properties such as saturation magnetization, initial permeability, Curie temperature, AC-resistivity and dielectric constant as a function of sintering temperature and zinc content. Structural properties such as lattice parameter, grain size and density are also studied. The mixed compositions exhibited higher saturation magnetizations at sintering temperatures as low as 1200 °C. While the Curie temperature decreased with zinc content, the permeability was found to increase. The AC-resistivity ranged from 105–107 Ω cm and decreased with zinc content and sintering temperature. The dielectric constants were lower than those normally reported for the Mn–Zn ferrites. Samples sintered at 1400 °C densified to about 94% of the theoretical density and the grain size was of the order of about 1.5 μm for the samples sintered at 1200 °C and increased subsequently with sintering temperature.  相似文献   

17.
In this paper, the microwave-absorbing properties of (Ni1−xyCoxZny)Fe2O4 spinel ferrites have been investigated within the frequency range of 0.5–14 GHz. There are two kinds of resonance peaks observed in the permeability spectra: domain-wall resonances at lower frequency and spin-rotation resonances at higher frequency. The reflection loss (RL) calculations show that the prepared NiCoZn spinel ferrites are good electromagnetic (EM) wave absorbers in microwave range. In terms of the absorbing frequency band (AFB) and the matching thickness (tm), (Ni0.407Co0.207Zn0.386)Fe2O4 shows the best performances: tm=3.15 mm and the AFB is 8.64–11.2 GHz. Decreasing the weight ratio of NiCoZn ferrites in ferrites/wax composites, the matching thickness decreases and the AFB shifts to higher frequencies. Compared with the absorbers with single-layer ferrites, the absorbers with double-layers ferrites have better absorbing performances, such as a thinner matching thickness and a wider EM wave AFB.  相似文献   

18.
A new active layer for CO2 sensing based on semiconducting CuO-CuxFe3−xO4 (with 0 ≤ x ≤ 1) nanocomposite was prepared by radiofrequency sputtering from a delafossite CuFeO2 target using a specific in situ reduction method followed by post annealing treatment in air. The tenorite-spinel ferrite nanocomposite layer was deposited on a simplified test device and the response in a carbon dioxide atmosphere was measured by varying the concentration up to 5000 ppm, at different working temperatures (130-475 °C) and frequencies (0.5-250 kHz). The results showed a high response of 50% (Rair/RCO2=1.9) at 250 °C and 700 Hz for a CO2 concentration of 5000 ppm.  相似文献   

19.
With the advance of modern electronic technology, there has been a critical need for Mn–Zn ferrites with even higher permeability and even lower power loss at higher frequencies. In this study, ferrite with extremely low losses than conventional ferrite materials at high frequency was developed employing a conventional ceramic powder processing technique. As a result, the core loss at 3 MHz, 10 mT and 100 °C is around 300 kW/m3, and its cutoff frequency is 4 MHz. Furthermore, the electromagnetic characteristics and the microstructure of this new DMR50 material are also discussed.  相似文献   

20.
Co0.5Zn0.5Fe2O4 nanoparticles were prepared using mechanical alloying (MA) and sintering. The crystallite size, coercivity, retentivity and saturation magnetization were also measured. The frequency dependence of dielectric and the magnetic parameters, namely, real permittivity ε′, loss tanget tan δ, real permeability μ′ and loss factor μ″ were measured at room temperature for samples sintered from 600 to 1000 °C, in the frequency range 10 MHz to 1.0 GHz. The results show that the crystallite size of the resulting products ranges between 16 and 67 nm for as-milled sample and the sample sintered at 1000 °C, respectively. The sample sintered at 1000 °C, measured at room temperature exhibited a saturation magnetization of 37 emu g−1. The values of permittivity remain constant within the measured frequency, but vary with sintering temperature. The permeability values, on the other hand however vary with both the sintering temperature and the frequency, thus, the absolute value of the permeability decreased after the natural resonance frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号