首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have thoroughly investigated the entire magnetic states of under-doped ferromagnetic-insulating manganite Nd0.8Sr0.2MnO3 through temperature-dependent linear and non-linear complex ac magnetic susceptibility measurements. This ferromagnetic-insulating manganite is found to have frequency-independent ferromagnetic to paramagnetic transition temperature at around 140 K. At around 90 K (≈T?) the sample shows a second frequency-dependent re-entrant magnetic transition as explored through complex ac susceptibility measurements. Non-linear ac susceptibility measurements (higher harmonics of ac susceptibility) have also been performed (with and without the superposition of a dc magnetic field) to further investigate the origin of this frequency dependence (dynamic behavior at this re-entrant magnetic transition). Divergence of 3rd harmonic of ac susceptibility in the limit of zero exciting field indicates a spin-glass-like freezing phenomena. However, large value of spin-relaxation time (τ0=10−8 s) and small value of coercivity (∼22 Oe) obtained at low temperature (below T?) from critical slowing down model and dc magnetic measurements, respectively, are in contrast with what generally observed in a canonical spin glass (τ0=10−12-10−14 s and very large value of coercivity below freezing temperature). We have attributed our observation to the formation of finite size ferromagnetic clusters which are formed as consequence of intrinsic phase separation and undergo cluster glass-like freezing below certain temperature in this under-doped manganite. The results are supported by the electronic- and magneto-transport data.  相似文献   

2.
The exchange bias phenomenon has been investigated in multiferroic Eu0.75Y0.25MnO3. The material shows a weak ferromagnetism with cone spin configuration induced by external magnetic field below 30 K. Consequently, the electric polarization coming from the cycloid spin order below 30 K can be suppressed by external magnetic fields. The magnetic hysteresis loops after cooling in a magnetic field exhibit characteristics of exchange bias below the spin glassy freezing temperature (Tg)∼16 K. The exchange bias field, coercivity field, and remanent magnetization increase with increasing cooling magnetic field. The exchange bias effect is ascribed to the frozen uncompensated spins at the antiferromagnetism/weak ferromagnetism interfaces in the spin-glass like phase.  相似文献   

3.
The effect of doping of rare earth Pr3+ ion as a replacement of Sm3+ in Sm0.5Sr0.5MnO3 is investigated. Temperature dependent dc and ac magnetic susceptibility, resistivity, magnetoresistance measurements on chemically synthesized (Sm0.5−xPrx)Sr0.5MnO3 show various unusual features with doping level x=0.15. The frequency independent ferromagnetic to paramagnetic transition at higher temperature (∼191 K) followed by a frequency dependent reentrant magnetic transition at lower temperature (∼31 K) has been observed. The nature of this frequency dependent reentrant magnetic transition is described by a critical slowing down model of spin glasses. From non-linear ac susceptibility measurements it has been confirmed that the finite size ferromagnetic clusters are formed as a consequence of intrinsic phase separation, and undergo spin glass-like freezing below a certain temperature. There is an unusual observation of a 2nd harmonic peak in the non-linear ac susceptibility around this reentrant magnetic transition at low temperature (∼31 K). Arrott plots at 10 and 30 K confirm the existence of glassy ferromagnetism below this low temperature reentrant transition. Electronic- and magneto-transport measurements show a strong magnetic field—temperature history dependence and strong irreversibility with respect to the sweeping of magnetic field. These results are attributed to the effect of phase separation and kinetic arrest of the electronic phase in this phase separated manganite at low temperatures.  相似文献   

4.
BiFe1−xNixO3 ceramic powders with x up to 0.10 have been prepared by the sol-gel technique. The band gap of BiFeO3 is 2.23 eV, and decreases to 2.09 eV for BiFe0.95Ni0.05O3 and BiFe0.90Ni0.10O3. The Mössbauer spectra show sextet at room temperature, indicating the magnetic ordering and the presence of only Fe3+ ions. Superparamagnetism with blocking temperature of 31 K for BiFe0.95Ni0.05O3 and 100 K for BiFe0.90Ni0.10O3 was observed. Enhanced magnetization at room temperature have been observed (1.0 emu/g for BiFe0.95Ni0.05O3 and 2.9 emu/g for BiFe0.90Ni0.10O3 under magnetic field of 10,000 Oe), which is one order larger than that of BiFeO3 (0.1 emu/g under magnetic field of 10,000 Oe). The enhanced magnetization was attributed to the suppression of the cycloidal spin structure by Ni3+ substitution and the ferrimagnetic interaction between Fe3+ and Ni3+ ions.  相似文献   

5.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

6.
The thermomagnetic behaviour (within the temperature range 553-300 K) for the bulk composite Nd60Fe30Al10 alloy is described in terms of a transition from paramagnetic to superferromagnetic state at T=553 K, followed by a ferromagnetic ordering for T<473 K. For the superferromagnetic regime, the alloy thermomagnetic response was associated to a homogeneous distribution of magnetic clusters with mean magnetic moment and size of 1072 μB and 2.5 nm, respectively. For T<473 K, a pinning model of domain walls described properly the alloy coercivity dependence with temperature, from which the domain wall width and the magnetic anisotropy constant were estimated as being of ≈8 nm and ≈105 J/m3, typical values of hard magnetic phases. Results are supported by microstructural and magnetic domain observations.  相似文献   

7.
In order to investigate the Ru sublattice magnetic structure, a study of the field dependence of the 99,101Ru nuclear magnetic resonance (NMR) has been carried out on the magnetic superconductor RuSr2GdCu2O8. It is found that the 99,101Ru NMR signal intensity increases significantly with applied magnetic field up to ≈3 kOe, beyond which, it progressively decreases. In addition, a shift of the NMR peaks to lower frequency is observed to begin at ≈1.3 kOe. These behaviors are shown to be accompanied by a field-induced Ru moment spin-flop in the ab planes, and are understood in terms of a previously proposed type-I antiferromagnetic ordering for the Ru sublattice. Based on this model, the inter-plane antiferromagnetic exchange coupling is determined to be ≈1.8 kOe along with a reversible in-plane spin-flop which is characterized by a field ≈0.6 kOe.  相似文献   

8.
Magnetization and specific heat of Nd0.7Pb0.3MnO3 single crystal are studied at applied magnetic field. Magnetization measurement at 0.3 T shows ferromagnetic phase below 150 K (TC) and below 20 K displays an antiferromagnetic component. The latter appears to be destroyed at 4.8 T. This anomalous increase below 50 K is probably due to reorientation of Nd moments at high magnetic field. Heat capacity has been measured at 0-10 T at low temperature. The data have been fitted to contributions from free electrons (γ), ferromagnetic spin excitations (β3/2), lattice and a Schottky-like anomaly related to the rare-earth magnetism of the Nd ions. Fitting yields that β3/2 term is very small at 6 and 10 T because of introducing paramagnetic component in ferromagnetic phase at applied magnetic field. Peak due to Schottky anomaly is observed to be broadened with application of magnetic field and the magnitude of Schottky gap(ΔSch) also increases accordingly.  相似文献   

9.
We have investigated the magnetic ordering and the incommensurate-commensurate phase transition in EuAs3 by zero-field (ZF) and longitudinal-field μSR. In the commensurate phase, stable at temperatures below TL=10.3 K, the ZF muon signal exhibits oscillations corresponding to four muon precession frequencies the lowest of which behaves anomalously. The muon signal shows no oscillation but exponential decay in the incommensurate phase stable in temperature range from TL≈10.3 K up to TN≈11 K. The temperature dependence of the fitted relaxation rate shows divergence-like behaviour at the ordering temperature TN≈11 K and also at the lock-in transition TL≈10.3 K. The results are in qualitative agreement with those previously obtained by neutron and X-ray magnetic scattering investigations except for the anomalous temperature dependence of the lowest frequency in the commensurate phase. We propose a model for this anomalous behaviour.  相似文献   

10.
The magnetic dynamics of charge ordered Nd0.8Na0.2MnO3 compound was studied by measuring the temperature variation of magnetization for different magnetic fields up to 7 T and, the field variation of magnetization at different temperatures down to 5 K. This sample exhibits a charge-ordering transition at 180 K, followed by a weak ferromagnetic (FM) transition at around 100 K and a spin glass like transition below 40 K. Suppression of charge-ordering and spin glass like transition and increase in FM TC were observed with an increase in magnetic field. A reversible metamagnetic transition above a threshold field (Hf) of 4.5 T was observed at 130 K, followed by a saturation magnetization of 3.2 μB/f.u. However at 5 K, an irreversible field induced first order phase transition from charge ordered state to FM state was observed at Hf=5 T. For comparison, the temperature and field variations of magnetization were studied on a FM compound from the same series with the composition Nd0.90Na0.10MnO3. A clear FM transition with a TC of 113 K and a saturation magnetization of 4.3 μB/f.u was observed.  相似文献   

11.
Using a co-precipitation method, perovskite-type manganese oxide La0.7Sr0.3MnO3 nanoparticles (NPs) with particle size 12 nm were prepared. Detailed studies of both 55Mn nuclear magnetic resonance and superparamagnetic resonance spectrum, completed by magnetic measurements, have been performed to obtain microscopic information on the local magnetic structure of the NP. Our results on nuclear dynamics provide direct evidence of formation of a magnetically dead layer, of the thickness ≈2 nm, at the particle surface. Temperature dependences of the magnetic resonance spectra have been measured to obtain information about complex magnetic properties of La0.7Sr0.3MnO3 fine-particle ensembles. In particular, electron paramagnetic resonance spectrum at 300 K shows a relatively narrow sharp line, but as the temperature decreases to 5 K, the apparent resonance field decreases and the line width considerably increases. The low-temperature blocking of the NPs magnetic moments has been clearly observed in the electron paramagnetic resonances. The blocking temperature depends on the measuring frequency and for the ensemble of 12 nm NPs at 9.244 GHz has been evaluated as 110 K.  相似文献   

12.
Influence of magnetic annealing at 823 K up to 10 T (T) on the phonon behaviors of nanocrystalline BiFeO3 was investigated by Raman spectroscopy. The frequencies of fundamental Raman modes increase obviously with increasing annealing magnetic field, and the intensity of the 1260 cm−1 two-phonon mode decreases. The pronounced anomalies of Raman phonon modes under magnetic annealing are attributed to the change of the spin-phonon coupling due to the modulation of spiral spin order. Furthermore, the temperature dependence of Raman peak positions, for the two prominent modes (147 and 176 cm−1), show no notable anomaly around TN except the sample annealed under 10 T magnetic field; meanwhile, in this sample, another obvious phonon anomaly occurs at ∼150 K (another magnetic phase transition point), which indicate that stronger magnetic annealing with 10 T intensely enhances the spin-phonon coupling, and possibly increases magnetoelectric coupling of nanocrystalline BiFeO3 due to severely modulation of spiral spin order.  相似文献   

13.
The magnetic properties of the intermetallic compound Dy2CuIn3 have been investigated. Ac and dc-susceptibility measurements indicate an onset of antiferromagnetic ordering at TN=19.5 K and an additional frequency dependent transition at Tds∼9 K. Neutron diffraction studies confirm the ordered transition at 19.5±1 K. The magnetic unit cell can be described by the propagation vector k=(0.25,0.25,0) with the magnetic moment μ=2.63(4)μB/Dy3+ parallel to the c-axis. Nevertheless, neutron diffraction reveals no additional magnetic phase transition around or below 9 K, which suggests that, at lower temperatures, a spin glass state may be formed in coexistence with the antiferromagnetic mode as a result of frustration and the antagonism between ferromagnetic and antiferromagnetic exchange interactions.  相似文献   

14.
The 57Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)6](ClO4)2 has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S=0) and high-spin (S=2) states. Temperature-dependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with TC(↓)=223 and TC(↑)=213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below TC. The present study reveals an increase in high-spin fraction upon heating in the temperature range below TC, and an explanation is provided.  相似文献   

15.
Magnetization and neutron diffraction studies have been performed on Ce4Sb3 compound (cubic Th3P4-type, space group I4¯3d, no. 220). Magnetization of Ce4Sb3 reveals a ferromagnetic transition at ∼5 K, the temperature below which the zero-field-cooled and field-cooled magnetization bifurcate in low applied fields. However, a saturation magnetization (MS) value of only ∼0.93μB/Ce3+ is observed at 1.8 K, suggesting possible presence of crystal field effects and a paramagnetic/antiferromagnetic Ce3+ moment. Magnetocaloric effect in this compound has been computed using the magnetization vs. field data obtained in the vicinity of the magnetic transition, and a maximum magnetic entropy change, −ΔSM, of ∼8.9 J/kg/K is obtained at 5 K for a field change of 5 T. Inverse magnetocaloric effect occurs at ∼2 K in 5 T indicating the presence of antiferromagnetic component. This has been further confirmed by the neutron diffraction study that evidences commensurate antiferromagnetic ordering at 2 K in zero magnetic field. A magnetic moment of ∼1.24μB/Ce3+ is obtained at 2 K and the magnetic moments are directed along Z-axis.  相似文献   

16.
The Er5Ge3 compound (Mn5Si3-type, hP16, P63/mcm) at 4 K shows magnetic ordering of the antiferromagnetic type. Its magnetic structure consists of sine modulated collinear magnetic moments of Er that are parallel to the c axis (with a propagation vector k=[0 0 ±0.3]). This corresponds to the magnetic unit cell (a a 10c), the values of the magnetic moment of the Er atoms being, as a general formula, MzM0 cos [2π(Z–1/4)(1–kZ)], with M0=9.2(2) μB at 4 K.  相似文献   

17.
We report the temperature dependence of susceptibility for various pressures, magnetic fields and constant magnetic field of 5 T with various pressures on La2−2xSr1+2xMn2O7 single crystal to understand the effectiveness of pressure and magnetic field in altering the magnetic properties. We find that the Curie temperature, Tc, increases under pressure (dTc/dP=10.9 K/GPa) and it indicates the enhancement of ferromagnetic phase under pressure up to 2 GPa. The magnetic field dependence of Tc is about 26 K for 3 T. The combined effect of pressure and constant magnetic field (5 T) shows dTc/dP=11.3 K/GPa and the peak structure is suppressed and broadened. The application of magnetic field of 5 T realizes 3D spin ordered state below Tc at atmospheric pressure. Both peak structure in χc and 3D spin ordered state are suppressed, and changes to 2D-like spin ordered state by increase of pressure. These results reveal that the pressure and the magnetic field are more competitive in altering the magnetic properties of bilayer manganite La1.25Sr1.75Mn2O7 single crystal.  相似文献   

18.
Temperature and field-dependent magnetization measurements on polycrystalline CeMnCuSi2 reveal that the Mn moments in this compound exhibit ordering with a ferromagnetic (FM) component ordered instead of the previously reported purely antiferromagnetic (AFM) ordering. The FM ordering temperature, Tc, is about 120 K and almost unchanged with external fields up to 50 kOe. Furthermore, an AFM component (such as in a canted spin structure) is observed to be present in this phase, and its orientation is modified rapidly by the external magnetic field. The Ce L3-edge X-ray absorption result shows that the Ce ions in this compound are nearly trivalent, very similar to that in the heavy fermion system CeCu2Si2. Large thermomagnetic irreversibility is observed between the zero-field-cooled (ZFC) and field-cooled (FC) M(T) curves below Tc indicating strong magnetocrystalline anisotropy in the ordered phase. At 5 K, a metamagnetic-type transition is observed to occur at a critical field of about 8 kOe, and this critical field decreases with increasing temperature. The FM ordering of the Mn moments in CeMnCuSi2 is consistent with the value of the intralayer Mn–Mn distance RaMn–Mn=2.890 Å, which is greater than the critical value 2.865 Å for FM ordering. Finally, a magnetic phase diagram is constructed for CeMnCuSi2.  相似文献   

19.
The hydrothermal synthesis and magnetic entropy change for the perovskite manganite La0.5Ca0.3Sr0.2MnO3 have been studied. The La0.5Ca0.3Sr0.2MnO3 can be produced as phase-pure, crystalline powders in one step from solutions of metal salts in aqueous potassium hydroxide solution at a temperature of 513 K in 72 h. Scanning electron microscopy shows that the materials are made up of cuboid-shaped particles in typical dimension of 4.0×2.5×1.6 μm. Heat treatment can improve the magnetocaloric effect for the hydrothermal sample. The maximum magnetic entropy change ΔSM for the as-prepared sample is 0.88 J kg−1 K−1 at 315 K for a magnetic field change of 2.0 T. It increases to 1.52 J kg−1 K−1, near its Curie temperature (317 K) by annealing the sample at 1473 K for 6 h. The hydrothermal synthesis method is a feasible route to prepare high-quality perovskite material for magnetic refrigeration application.  相似文献   

20.
Glasses with composition xWO3·(30−x)M2O·70B2O3 (M=Li, Na; 0≤x≤15) doped with 2 mol% V2O5 have been prepared using the melt-quench technique. The electron paramagnetic resonance spectra have been recorded in X-band (ν≈9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) only due to V4+ ions, which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glass system. The tetragonality increases with WO3:M2O ratio and also there is an expansion of 3dxy orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400-4000 cm−1 depicts the presence of WO6 group. The DC conductivity (σ) has been measured in the temperature range 423-623 K and is found to be predominantly ionic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号