首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We measured inelastic electron tunneling (IET) spectra and conductance for MgO tunneling magnetoresistance (TMR) films to obtain information on the ferromagnetic/barrier layer interface. The IET spectra showed the difference between amorphous and crystalline structures in the barrier. In the magnetic tunnel junction (MTJ) with a crystalline barrier the IET spectra indicated an Mg-O phonon peak at a low bias voltage by measurement with a parallel magnetization configuration. On the other hand, no peak was observed in the MTJ with an amorphous barrier.  相似文献   

2.
Temperature- and bias voltage-dependent transport measurements of magnetic tunnel junctions (MTJs) with perpendicularly magnetized Co/Pd electrodes are presented. Magnetization measurements of the Co/Pd multilayers are performed to characterize the electrodes. The effects of the Co layer thickness in the Co/Pd bilayers, the annealing temperature, the Co thickness at the MgO barrier interface, and the number of bilayers on the tunneling magneto resistance (TMR) effect are investigated. TMR-ratios of about 11% at room temperature and 18.5% at 13 K are measured and two well-defined switching fields are observed. The results are compared to measurements of MTJs with Co-Fe-B electrodes and in-plane anisotropy.  相似文献   

3.
Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier.  相似文献   

4.
We have studied the effects of the initial stages of the annealing on magnetic tunnel junctions with MgO barriers and CoFeB electrodes. We report changes in the resistance-voltage characteristics and tunneling magnetoresistance for patterned transport junctions, and correlate these with the observed changes in the structural and magnetic interface morphologies determined by soft X-ray resonant magnetic scattering from sheet films from the same wafer. An important feature of our experiment was that all measurements were carried out within the soft X-ray diffractometer on samples from the same wafer subjected to simultaneous annealing cycles, so that our magnetotransport and scattering data are directly comparable. The as-grown junction showed a tunneling magnetoresistance ratio of 5.5%, and a specific barrier resistance of . A anneal for 1 h resulted in a small rise in barrier resistance and magnetoresistance coupled with a smoothing of the magnetic interfaces, consistent with the healing of barrier defects and removal of tunneling hot-spots. A subsequent anneal for a further hour resulted in further smoothing, and a rise in the magnetoresistance ratio to 72%, and a much weaker dependence of the parallel state resistance upon voltage bias, indicating the development of crystallographic texture in the electrodes. Annealing to yielded a further decrease in magnetic interface width (the quadrature sum of roughness and intermixing length scales). The reduction in interface width for Co species occurred at higher temperatures than for Fe throughout the experiments.  相似文献   

5.
We have found inverse tunneling magnetoresistance (TMR) with a non-symmetric bias voltage dependence in a nominally symmetric Si (001)/Ag/CoFe/AlOx/CoFe/IrMn/Ag magnetic tunnel junction after field cooling. The O K edge fine structure extracted from electron energy loss spectroscopy spectrum images taken at the interfaces of junctions with inverse TMR shows a thin, discontinuous Fe3O4 layer at the CoFe/AlOx interfaces. The Fe L2,3 edge core level shifts are also consistent with those of Fe3O4. We find no Fe3O4 layer in junctions with normal TMR. We believe this Fe3O4 layer is responsible for the inverse TMR.  相似文献   

6.
Ozone oxidization process of metal Mg film for the barrier formation in magnetic tunnel junctions (MTJs) is investigated. Ozone exposure method is expected to oxidize ultra-thin metal films more mildly than with the plasma oxidization method, since the energy level of atomic oxygen is ∼2 eV lower in the ozone method than in the plasma method. The main results were as follows: (1) In the case of ozone oxidation, the diffusion coefficient of oxygen in the insulator is much smaller than that in plasma oxidation. (2) Mg–O film thickness, which is formed by reaction immediately on the metal Mg surface, is thicker as compared with the Al case. (3) In the ozone oxidation method of metal films with the thickness of more than the film thickness formed by reaction, the oxidation is spontaneously stopped at the interface to the bottom Co–Fe. As a result, we succeeded in inducing a TMR ratio of 25% at room temperature in MTJs with Mg(1.3 nm)–O barrier with wider exposure range than in the plasma case.  相似文献   

7.
The crystallization characteristics of a middle CoFeB free layer in a magnetic tunnel junction (MTJ) with double MgO barriers were investigated by tunneling magnetoresistance (TMR) measurements of patterned cells across an 8-inch wafer. The MTJ structure was designed to have two CoFeB free layers and one bottom pinned layer, separated by MgO tunnel barriers. The observed resistance showed three types of TMR curves depending on the crystallization of the middle CoFeB layer. From the analysis of TMR curves, coherent crystallization of the middle CoFeB layer with the top and bottom MgO barriers was found to occur non-uniformly: About 80% of the MTJ cells in the wafer exhibited coherent crystallization of the middle CoFeB layers with the bottom MgO tunnel barrier, while others had coherent crystallization with the top MgO tunnel barrier or both barriers. This non-uniform crystallization of the middle CoFeB layer in a double MTJ was also clearly observed in tunneling electron microscopy images. Thus, control of the crystallization of the middle CoFeB layer is important for optimizing the MTJ with double MgO barriers, and especially for the fabrication of double barrier MTJ on a large area substrate.  相似文献   

8.
We comment on both recent progress and lingering puzzles related to research on magnetic tunnel junctions (MTJs). MTJs are already being used in applications such as magnetic-field sensors in the read heads of disk drives, and they may also be the first device geometry in which spin-torque effects are applied to manipulate magnetic dynamics, in order to make non-volatile magnetic random access memory. However, there remain many unanswered questions about such basic properties as the magnetoresistance of MTJs, how their properties change as a function of tunnel-barrier thickness and applied bias, and what are the magnitude and direction of the spin-transfer-torque vector induced by a tunnel current.  相似文献   

9.
A tunnel magnetic junction is considered with magnetic hard and magnetic soft layers of cubic symmetry. The magnetic switching of the layers is analyzed for a magnetic field perpendicular to the initial magnetizations. In such a situation, an additional peak in the tunnel magnetoresistance ratio appears at the magnetic field value that is substantially lower than the anisotropy field of the soft layer.  相似文献   

10.
A series of Co40Fe40B20/SrTiO3/Co40Fe40B20 magnetic tunnel junctions with a bottom-pinned synthetic antiferromagnet have been prepared by sputtering. Devices optimally annealed at 325 °C exhibit an exchange bias of about 65 mT, and a tunnel magnetoresistance of 2%. The smaller than predicted effect is attributed to the lack of epitaxy between the crystallized CoFeB electrodes and the SrTiO3 (STO) barrier, due to poor crystal quality of the barrier layer. Unlike MgO, well-crystallized, oriented STO does not grow on amorphous Co40Fe40B20.  相似文献   

11.
This paper presents a numerical study of magnetization switching driven by spin-polarized current in high-TMR magnetic tunnel junctions (TMR>100%). The current density distribution throughout the free-layer is computed dynamically, by modeling the ferromagnet/insulator/ferromagnet trilayer as a series of parallel resistances. The validity of the main hypothesis, which states that the current flows perpendicular to the sample plane, has been verified by numerically solving the Poisson equation. Our results show that the nonuniform current density distribution is a source of asymmetry to the switching process. Furthermore, we observe that the reversal mechanisms are characterized by well-defined localized pre-switching oscillation modes.  相似文献   

12.
We have recently evidenced a junction magnetoresistance (JMR) signal of about 5% in magnetic tunnel junctions (MTJs) with ZnS as tunnel barrier layer. The MTJ were grown by magnetron sputtering on Si (1 1 1) substrate at room temperature and have the following structure: Fe6 nmCu30 nmCoFe1.8 nmRu0.8 nmCoFe3 nmZnS2 nmCoFe1 nmFe4 nmCu10 nmRu3 nm.

The hard magnetic bottom electrode consists of an artificial antiferromagnetic structure in which the rigidity is ensured by the antiferromagnetic exchange coupling between two FeCo layers through an Ru spacer layer. The magneto-transport for these MTJ has been studied at various temperatures to gain understanding of the transport mechanism in such junctions. A strong and linear increase of the JMR is observed as the temperature is decreased to reach 10% at a low temperature, while the conductance decreases with decreasing temperature. To understand the mechanism at the origin of these behaviors, the contribution of magnon is taken into account. It is concluded that the observed behaviors are not only related to the magnon contribution but that resonant low-level states inside the barrier can assist the tuneling transport.  相似文献   


13.
The effect of magnetically driven high-frequency rectification in a polycrystalline La0.7Ca0.3MnO3 manganite has been measured at different frequencies of microwave radiation. The magnetic field dependence of a rectified voltage has a broad peak resembling an absorption line, whose shape and position are determined by the radiation frequency. The rectification effect in a polycrystalline manganite sample is related to a ramified network of magnetic tunnel junctions, which is formed by ferromagnetic conducting grains with insulator boundaries. The results of measurements are consistent with a model for the magneto-dependent rectification effect based on the interplay between a spin-polarized current through the tunnel junctions and magnetic resonance induced in the grains forming the junctions.  相似文献   

14.
王琰  韩秀峰  卢仲毅  张晓光 《物理》2007,36(3):195-198
磁性隧道结材料中自旋相关的量子阱态所导致的共振隧穿现象具有很重要的研究和应用价值,文章介绍了最近在Fe(001)/MgO/Fe/MgO/Fe双势垒磁性隧道结中存在的量子阱共振隧穿效应的理论研究工作,通过量子阱态的第一性原理的计算以及结合对中间Fe薄膜孤岛结构所导致Coulomb阻塞效应的分析,证实了最近Nozaki等人(Nozaki T et al.Phys.Rev.Lett.,2006,96:027208)实验中得到的振荡效应确实来源于中间Fe层多数自旋电子在Г点处形成的△1对称性的量子阱态.Coulomb阻塞效应的存在正是导致实验中低温下量子阱共振隧穿效应不够明显的主要原因.  相似文献   

15.
Sub-micron sized magnetic tunnel junctions are fabricated by electron beam lithography. Magnetoresistance measurements were done at crossed easy- and hard-axis fields and the critical switching curves for 3 different sub-μm junctions are discussed. Single domain like switching according to the Stoner and Wohlfarth model can be achieved, but Néel coupling effects and AAF stray field effects have to be controlled.  相似文献   

16.
Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions(DBMTJs), where the coupling between the top and middle Co Fe B layers is antiferromagnetic with a 0.8-nm thin top Mg O barrier of the Co Fe B/Mg O/Co Fe/Co Fe B/Mg O/Co Fe B DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter αmag.With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state(antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process αmag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles(θ) to the easy axis of the free layer,the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance.  相似文献   

17.
The La1.32Sr1.68Mn2O7 layered manganite system has been studied by the low temperature electrical resistance and magnetoresistance under hydrostatic pressure up to 25 kbar. We have observe both, a Curie temperature (TC) and a metal-insulator transition (TMI) at 118 K in the ambient pressure. The applied pressure shifts the TMI to higher temperature values and induces a second metal-insulator transition (T2MI) at 90 K, in the temperature dependence of resistivity measurements. Also, the pressure suppresses the peak resistance abruptly at TC. When an external field of 5 T is applied, we have observed a large negative magnetoresistance of 300% at the transition temperature and a 128% at 4.5 K. However, the increased pressure decreases the magnetoresistance ratio gradually. When the pressure reaches its maximum available value of 25 kbar, the magnetoresistance ratio decreases at a rate of 1.3%/kbar. From our experimental results, the decrease of magnetoresistance ratio with pressure is explained by the pressure induced canted spin state which is not favor for the spin polarized intergrain tunneling in layered manganites.  相似文献   

18.
A generalized approach to study quasiparticle transport across hybrid magnetic tunnel junctions (MTJs) is formulated using the non-equilibrium Green's function technique. This formalism allows for arbitrary thicknesses of the electrodes and the central scattering region comprising of materials with multiple electronic bands, and incorporates the many body interactions present in the electrode regions. While the method can be used to study the transport characteristics of various types of MTJs, we have used it to study the tunneling characteristics and magnetoresistance (MR) of MTJs in which s-f interaction is present at the electrode layers. It is also used to study the transport characteristics of MTJs with hybrid electrodes and double barrier. The magnetic correlation present in the electrodes is found to strongly influence the TMR. Eventhough the magnetic correlation in general suppress the TMR, the TMR is found to be enhanced strongly for certain band occupations of the electrodes. We observe a fall of TMR with increase in the number of layers in the insulating region. Band occupation of the metallic layer present at the middle of the insulating layers in the double barrier MTJ is found to be important in deciding its tunnel characteristics. Origin of the different types of behavior of TMR is analyzed in terms of the spin-dependent tunnel currents.  相似文献   

19.
Coherent electronic transport through a molecular device is studied using non-equilibrium Green's function (NEGF) formalism. Such device is made of atomic nanowire which is connected to ferromagnetic electrodes. The molecule itself is described with the help of Hubbard model (Coulomb interactions are treated by means of the Hartree-Fock approximation), while the coupling to the electrodes is modeled through the use of a broad-band theory. It was shown that magnetoresistance varies periodically with increasing length of the atomic wire (in the linear response regime) and oscillates with increasing bias voltage (in the nonlinear response regime). Since the TMR effect for analyzed structures is predicted to be large (tens of percent), these junctions seem to be suitable for application as magnetoresistive elements in future electronic circuits.  相似文献   

20.
         下载免费PDF全文
Wenyu Huang 《中国物理 B》2022,31(9):97502-097502
Because of the wide selectivity of ferromagnetic and ferroelectric (FE) components, electric-field (E-field) control of magnetism via strain mediation can be easily realized through composite multiferroic heterostructures. Here, an MgO-based magnetic tunnel junction (MTJ) is chosen rationally as the ferromagnetic constitution and a high-activity (001)-Pb(Mg$_{1/3}$Nb$_{2/3}$)$_{0.7}$Ti$_{0.3}$O$_{3}$ (PMN-0.3PT) single crystal is selected as the FE component to create a multiferroic MTJ/FE hybrid structure. The shape of tunneling magnetoresistance (TMR) versus in situ E-fields imprints the butterfly loop of the piezo-strain of the FE without magnetic-field bias. The E-field-controlled change in the TMR ratio is up to $-$0.27% without magnetic-field bias. Moreover, when a typical magnetic field ($sim pm 10$ Oe) is applied along the minor axis of the MTJ, the butterfly loop is changed significantly by the E-fields relative to that without magnetic-field bias. This suggests that the E-field-controlled junction resistance is spin-dependent and correlated with magnetization switching in the free layer of the MTJ. In addition, based on such a multiferroic heterostructure, a strain-gauge factor up to approximately 40 is achieved, which decreases further with a sign change from positive to negative with increasing magnetic fields. This multiferroic hybrid structure is a promising avenue to control TMR through E-fields in low-power-consumption spintronic and straintronic devices at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号