首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic, magnetoelectric and dielectric properties of multiferroic CoFe2O4–Pb(Fe1/2Nb1/2)O3 composites prepared as bulk ceramics were compared with those of tape cast and cofired laminates consisting of alternate ferrite and relaxor layers. X-ray diffraction analysis and Scanning Electron Microscope observations of ceramic samples revealed two-phase composition and fine grained microstructure with uniformly distributed ferrite and relaxor phases. High and broad maxima of dielectric permittivity attributed to dielectric relaxation were found for ceramic samples measured in a temperature range from −55 to 500 °C at frequencies 10 Hz–2 MHz. Magnetic hysteresis, zero-field cooled (ZFC) and field cooled (FC) curves, and dependencies of magnetization on temperature for both magnetoelectric composites were measured with a vibrating sample magnetometer in an applied magnetic field up to 80 kOe at 4–400 K. The hysteresis loops obtained for composites are typical of a mixture of the hard magnetic material with a significant amount of the paramagnet. The bifurcation of ZFC–FC magnetizations observed for both composites implies spin-glass behavior. Magnetoelectric properties at room temperature were investigated as a function of dc magnetic field (0.3–7.2 kOe) and frequency (10 Hz–10 kHz) of ac magnetic field. Both types of composites exhibit a distinct magnetoelectric effect. Maximum values of magnetoelectric coefficient attained for the layered composites exceed 200 mV/(cm Oe) and are almost three times higher than those for particulate composites.  相似文献   

2.
The broadband near-IR emission has been investigated in a series of Er/Tm co-doped Bi2O3–SiO2–Ga2O3 (BSG) glasses with 800 nm laser diode as an excitation source. A broadband emission extending from 1350 to 1650 nm with a full width at half maximum (FWHM) around 165 nm is obtained in 0.2 wt% Er2O3 and 1.0 wt% Tm2O3 co-doped BSG glass. The fluorescence decay curves of glasses are measured and maximum energy transfer efficiency from Er3+ to Tm3+ reaches 71% when Tm3+ concentration is 1.0 wt%. The temperature dependence of the broadband emission spectra in Er3+–Tm3+ co-doped BSG glass is also recorded to further understand the energy-transfer processes between Er3+ and Tm3+. The present work suggests that Er/Tm co-doped BSG glasses can be a potential candidate for broadband integrated amplifier.  相似文献   

3.
Magnetic properties of glass ceramics derived from glasses with composition 41CaO·(52−x)SiO2·4P2O5·xFe2O3·3Na2O (2?x?10 mol% iron oxide (Fe2O3)) are reported. Structural investigation revealed the presence of nanocrystalline magnetite phase in the heat-treated samples containing x?2 mol% Fe2O3. Magnetic hysteresis cycles of the glass-ceramic samples were obtained with a maximum applied field of ±20 kOe as well as a low field of ±500 Oe, in order to evaluate the potential of these glass ceramics for hyperthermia treatment of cancer. Samples with x>2 mol% of iron oxide exhibited magnetic behavior similar to soft magnetic materials with low coercivity. The evolution of magnetic properties in these samples as a function of iron oxide molar concentration is correlated with the amount and crystallite size of magnetite phase present in them.  相似文献   

4.
Magnetically separable and reusable core–shell CoFe2O4–ZnO photocatalyst nanospheres were prepared by the hydrothermal synthesis technique using glucose derived carbon nanospheres as the template. The morphology and the phase of core–shell hybrid structure of CoFe2O4–ZnO were assessed via TEM, SEM and XRD. The magnetic composite showed high UV photocatalytic activity for the degradation of methylene blue in water. The photocatalytic activity was found to be ZnO shell thickness dependent. Thicker ZnO shells lead to higher rate of photocatalytic activity. Hybrid nanospheres recovered using an external magnetic field demonstrated good repeatability of photocatalytic activity. These results promise the reusability of the hybrid nanospheres for photocatalytic activity.  相似文献   

5.
高若瑞  喻伟  费春龙  张悦  熊锐  石兢 《物理学报》2012,61(20):453-459
采用热分解法制备了分散程度高且平均晶粒尺寸为20 nm的CoFe2O4和MnFe2O4复合介质.低温磁化曲线测量显示,制备的复合介质具有软-硬磁交换弹性耦合效应,且合成温度以及软磁和硬磁相的成分比例对磁交换弹性耦合的强度有很大的影响.变温磁测量显示,温度为20K时,复合纳米介质的表面自旋冻结效应导致饱和磁化强度显著增加.Henkel测量显示,对分散的CoFe2O4和MnFe2O4复合介质,磁偶极相互作用占主导作用.  相似文献   

6.
We report on μμ Hall probe measurements on single crystals of 2H–NbS2. This compound is the only superconducting 2H-dichalcogenide which does not develop a charge density wave. At low temperature and low magnetic field, a Bean profile is observed, allowing to evaluate the critical current. Moreover, the anisotropy and temperature dependence of the first critical field in 2H–NbS2 was measured down to 1.2 K. A linear temperature dependence of the first penetration field is clearly observed. The absolute magnetic penetration depth is found to be 83 nm which is slightly reduced compared to the iso-structural compound 2H–NbSe2.  相似文献   

7.
The characteristics of a BaO–Al2O3–B2O3–SiO2–La2O3 glass ceramic prepared by spray pyrolysis were studied. Glass powders with spherical shape and amorphous phase were prepared by complete melting at a preparation temperature of 1 500°C. The mean size and geometric standard deviation of the powders prepared at the temperature of 1 500°C were 0.6 μm and 1.3. The glass powders had similar composition to that of the spray solution. The glass transition temperature (T g) of the glass powders was 600.3°C. Two crystallization exothermic peaks were observed at 769.3 and 837.8°C. Densification of the specimen started at a sintering temperature of 600°C, in which Ba4La6O(SiO4)6 as main crystal structure was observed. Complete densification of the specimen occurred at a sintering temperature of 800°C. The specimens sintered at temperatures above 800°C had main crystal structure of BaAl2Si2O8.  相似文献   

8.
xCeO2–30Bi2O3–(70−x) B2O3 glasses are synthesized by using the melt quench technique. A number of studies such as XRD, density, molar volume, optical band gap, refractive index and FTIR spectroscopy are employed to characterize the glasses. The band gap decreases from 2.15 to 1.61 eV, refractive index increases from 2.67 to 2.93 and density increases from 4.151 to 4.633 g/cm3. The decrease in band gap with CeO2 doping approaches the semiconductor behavior. FTIR spectroscopy reveals that incorporation of CeO2 into glass network helps to convert the structural units of [BO3] into [BO4] and results in Bi–O bond vibration of [BiO6].  相似文献   

9.
 采用溶胶-凝胶工艺和高温高压实验技术,制备了纳米CoFe2O4/SiO2复合材料。利用X射线衍射仪、扫描电子显微镜和振动样品磁强计,对样品的结构、微观形貌和磁性进行了研究,并对CoFe2O4中阳离子的占位情况进行了讨论。结果表明,随着处理压力的升高,样品的晶粒尺寸增大,晶格常数减小,比饱和磁化强度增大。通过计算结果可以推断,压力的升高导致CoFe2O4中的部分Fe3+从A位移向了B位,而部分Co2+则从B位移向了A位。  相似文献   

10.
11.
In this paper, we undertake a quantitative analysis of observed temperature-dependent in-plane normal state electrical resistivity of single crystal YBa2Cu4O8. The analysis is within the framework of classical electron–phonon i.e., Bloch-Gruneisen model of resistivity. It is based on the inherent acoustic (low frequency) phonons (ωac) as well as high frequency optical phonons (ωop), the contributions to the phonon resistivity were first estimated. The optical phonons of the oxygen breathing mode yields a relatively larger contribution to the resistivity compared to the contribution of acoustic phonons. Estimated contribution to in-plane electrical resistivity by considering both phonons i.e., ωac and ωop, along with the zero-limited resistivity, when subtracted from single crystal data infers a quadratic temperature dependence over most of the temperature range [80 ? T ? 300]. Quadratic temperature dependence of ρdiff. = [ρexp − {ρ0 + ρeph (=ρac + ρop)}] is understood in terms of electron–electron inelastic scattering. The relevant energy gap expressions within the Nambu-Eliashberg approach are solved imposing experimental constraints on their solution (critical temperature Tc). It is found that the indirect-exchange formalism provides a unique set of electronic parameters [electron–phonon (λph), electron-charge fluctuations (λpl), electron–electron (μ) and Coulomb screening parameter (μ*)] which, in particular, reproduce the reported value of Tc.  相似文献   

12.
丁皓  申承民  惠超  徐梽川  李晨  田园  时雪钊  高鸿钧 《中国物理 B》2010,19(6):66102-066102
Monodisperse Au-Fe 3 O 4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution.The size of Au and Fe 3 O 4 particles can be controlled by changing the injection temperature.UV-Vis spectra show that the surface plasma resonance band of Au-Fe 3 O 4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size.The as-prepared heterodimeric Au-Fe 3 O 4 NPs exhibited superparamagnetic properties at room temperature.The Ag-Fe 3 O 4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO 3 as precursor instead of HAuCl 4.It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs.  相似文献   

13.
Cr2O3 doped SnO2–Zn2SnO4 composite ceramics were prepared by traditional ceramic processing and the varistor, dielectric properties were investigated. With increasing Cr2O3 content, the breakdown electrical field EB increases from 11 to 92 V/mm and the relative dielectric constant εr measured at 1 kHz, 50 °C decreases from 11,028 to 3412, respectively. The barrier height ?B about 0.8–0.84 eV and the decreasing of SnO2 grain size suggest that the varistor behavior with high εr is originated from SnO2–SnO2 or SnO2–Zn2SnO4 grain boundary. In the dielectric spectra lower than 1 kHz, a dielectric peak is presented and depressed with increasing bias voltage. Similarly, at high temperature, the dielectric constant also presents a dielectric peak in the temperature spectra and the peak becomes faint with increasing frequency. The exhibition of the dielectric peak is thought to be attributed to the conduction of grain boundary since it is accompanied by the sharp increase of dielectric loss. In addition, a dielectric relaxation with the activation energy about 0.4–0.5 eV was observed in the temperature range of 20–100 °C. Based on the results, the formation mechanism of Schottky barriers at grain boundaries and the varistor behavior with high dielectric constant are well understood.  相似文献   

14.
The conducting protonated polyaniline (ES)/γ-Fe2O3 nanocomposite with the different γ-Fe2O3 content were synthesized by in-situ polymerization. Its morphology, microstructure, DC conductivity and magnetic properties of samples were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), four-wire-technique, and vibrating sample magnetometer (VSM), respectively. The microwave absorbing properties of the nanocomposite powders dispersing in wax coating with the coating thickness of 2 mm were investigated using a vector network analyzers in the frequency range of 7–18 GHz. The pure ES has shown the absorption band with a maximum absorption at approximately 16 GHz and a width (defined as frequency difference between points where the absorption is more than 8 dB) of 3.24 GHz, when 10% γ-Fe2O3 by weight is incorporated , the width is broadened to 4.13 GHz and some other absorption bands appear in the range of 7–13 GHz. The parameter dielectric loss tan δe (=ε″/ε′) in the 7–18 GHz is found to decrease with increasing γ-Fe2O3 contents with 10%, 20%, 30%, respectively, but magnetic loss tan δm (=μ″/μ′) increases with increasing γ-Fe2O3 contents. The results show that moderate content of γ-Fe2O3 nanoparticles embedded in protonated polyaniline matrix may create advanced microwave absorption properties due to simultaneous adjusting of dielectric loss and magnetic loss.  相似文献   

15.
Trivalent rare earth ions doped borosulfophosphate glasses are in high demand owing to their several unique attributes that are advantageous for applications in diverse photonic devices. Thus, Sm3+ ion doped calcium sulfoborophosphate glasses with composition of 25CaSO4–30B2O3–(45?x)P2O5xSm2O3 (where x?=?0.1, 0.3, 0.5, 0.7 and 1.0 mol%) were synthesized using melt-quenching technique. X-ray diffraction confirmed the amorphous nature of the prepared glass samples. Differential thermal analyses show transition peaks for melting temperature, glass transition and crystallization temperature. The glass stability is found in the range 91?°C to 116?°C which shows increased stability with addition of Sm2O3 concentration. The Fourier transform infrared spectral measurements carried out showed the presence of vibration bands due to PO linkage, BO3, BO4, PO4, POP, OPO, SOB, and BOB unit. Glass density showed increase in value from 2.179 to 2.251?g cm?3 with increase in Sm2O3 concentration. The direct, indirect band gap and Urbach energy calculated were found to be within 4.368–4.184?eV, 3.641–3.488?eV and 0.323–0.282?eV energy ranges, respectively. The absorption spectra revealed ten prominent peaks centered at 365, 400, 471, 941, 1075, 1228, 1375, 1477, 1528 and 1597?nm corresponding to 4D3/2,6H5/24I11/2,6P3/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6H15/2 and 6F1/2 transitions respectively. Photoluminescence spectra monitored at the excitation of 398?nm exhibits four emission bands positioned at 559, 596,643 and 709?nm corresponding to 4G5/26H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions respectively. The nephelauxetic parameters calculated showed good influence on the local environment within the samarium ions site and the state of the SmO bond. The Judd–Ofelt intensity parameters calculated for all glass samples revealed that Ω6?>?Ω4?>?Ω2. The emission cross-section and the branching ratios values obtained for 4G5/26H7/2 transition indicate its suitability for LEDs and solid-state laser application.  相似文献   

16.
xV2O5xCeO2–(30−x)PbO–(70−x) B2O3 glasses are synthesized by using the melt quench technique. The number of studies such as XRD, density, molar volume, optical band gap, refractive index and FTIR spectroscopy are employed to characterize the glasses. The band gap decreases from 2.20 to 1.78 eV and density increases from 3.49 to 4.25 g/cm3. FTIR spectroscopy reveals that incorporation of V2O5 in glass network helps to convert the structural units of [BO3] into [BO4]. At higher concentration of vanadium, VO vibration of [VO5] structural units and V–O–V vibration are present. The bond ionicity of glasses increases with incorporation of V2O5 contents.  相似文献   

17.
王丽  王海波  王涛  李发伸 《物理学报》2006,55(12):6515-6521
聚乙烯醇(PVA)溶胶凝胶法制备出CoFe2O4纳米微粉,用X射线衍射研究了铁氧体纳米颗粒的结构.测量了CoFe2O4纳米颗粒80—873 K的变温穆斯堡尔谱,发现纳米颗粒的磁转变温度范围为793—813 K,比块体材料的磁性转变温度要低.CoFe2O4纳米颗粒的德拜温度θA=674 K,θB=243 K,比块体材料要小.CoFe2O4纳米颗粒超精细场Hf随温度的变化符合T3/2+T5/2定理.当温度较高时,平均同质异能移IS随温度的升高而减小,并呈线性关系. 关键词: 纳米颗粒 磁性 穆斯堡尔谱  相似文献   

18.
SrAl2O4:Eu2+, Dy3+ is a phosphor characterized by a long persistent luminescence (PLUM) when excited with UV-vis light and ionizing radiation exhibiting intensity variation in the 10-320 K temperature range and maximum intensity around 320 K. In this work, we study the PLUM behavior of SrAl2O4:Eu2+, Dy3+ as a function of temperature from room temperature to 670 K in samples exposed to β irradiation. The room-temperature irradiation followed by PLUM readout revealed an integrated PLUM maximum at 323 K decreasing later. In contrast, irradiation and PLUM readout at temperatures above room temperatures produced integrated PLUM intensities maxima around 425 and 625 K. Successive cycles of preheating followed by irradiation and PLUM readout produced an increasing of the PLUM intensity as a function of cycle number. The observed phenomenon was ascribed to trapped electrons at the multiple trapping states related to the 425 and 625 K defects levels and electron transfer from one trap to another (electron hopping). Eventually, there is a return to the 5d level of Eu3+ cations with the characteristic PLUM emission by thermal energy supplied at room temperature (lattice vibrations) or by a preheating-irradiation-readout cycle. This property may allow keeping up the PLUM properties of SrAl2O4:Eu2+, Dy3+ phosphors through background radiation self exposure and adequate heating processes.  相似文献   

19.
We have carried out systematic studies on well-characterized monodisperse Fe3O4/γ-Fe2O3 core/shell nanoparticles of 2-30 nm having a very narrow size distribution and possessing a uniquely mono-layer of surface γ-Fe2O3. This unique core-shell structure, probably having a disordered magnetic surface state, leads us to three key observations of unusual magnetic properties: i) a very large magnetic exchange anisotropy reaching over 7 × 106 erg/cm3 for the smaller particles, ii) exchange bias behavior in the magnetization data of the core/shell Fe3O4/γ-Fe2O3 nanoparticles, and iii) the temperature dependence of the coercive field following an unusual exponential behavior.  相似文献   

20.
陈昂  智宇  戴希  鲍亚华  杨敬思 《物理学报》1994,43(12):2038-2044
报道了超导陶瓷YBa2Cu36+δ与铁电陶瓷BaTiO3进行复合的结果。研究了该复合功能陶瓷的物相、(超)导电性和低温电阻温度特性。结果表明,采用合理的合成工艺,可得到呈现混和分布的两相复合功能陶瓷材料;该复合材料的电导特征符合三维渗流导电行为,发现在较高YBa2Cu36+δ含量时,样品呈超导电性,并对此作了初步讨论。 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号