首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic nanocomposites consisting of cobalt ferrite nanoparticles embedded in silica matrix were prepared by the coprecipitation method using metallic chlorides as precursors for ferrite. Subsequently composites were annealed at 100, 200 and 300 °C for 2 h. The samples were structurally characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The magnetic properties were measured in the temperature range of 10-300 K using vibrating sample magnetometer (VSM). The effects of thermal treatment on structural and magnetic properties of nanocomposites were investigated. When the samples were annealed, CoFe2O4 nanocrystallites were observed in the SiO2 matrix, whose size increases with increase in annealing temperature. The coercivity and saturation magnetization of nanocomposite (annealed at 300 °C for 2 h) are much higher than that of bulk cobalt ferrite. The realization of adjustable particle sizes and controllable magnetic properties makes the applicability of the CoFe2O4 nanocomposite more versatile.  相似文献   

2.
The effects of high magnetic field (10 T) on the products obtained by calcination of Co-Fe LDH precursors at different temperatures were investigated. The XRD results indicated that FeIII substituted for CoIII in Co3O4 to yield CoIICoIIIFeIIIO4 under the calcination of Co-Fe LDH precursors at 400 °C. The products obtained by magnetic field annealing at 400 °C had a porous plate-like morphology, whereas the products without magnetic field annealing were composed of nanoparticles. It was seen that CoFe2O4 phase could be formed at low temperature (about 500 °C) under the magnetic field annealing. The grain size of products obtained by magnetic field annealing at 800 °C was larger than that of zero magnetic field. It was found that the saturation magnetization was significantly enhanced after magnetic field annealing, especially at lower temperature (≤600 °C). The possible reason for the effects on the microstructure and magnetic properties of products obtained by magnetic field annealing was discussed.  相似文献   

3.
Self-heating from magnetic nanoparticles under AC magnetic field can be used either for hyperthermia or to trigger the release of an anti-cancer drug, using thermo-responsive polymers. The heat generated by applying an AC magnetic field depends on the properties of magnetic nanoparticles (composition, size, crystal structure) as well as the frequency and amplitude of the magnetic field. Before these systems can be efficiently applied for in vitro or in vivo studies, a thorough analysis of the magnetically induced heating is required. In this study, CoFe2O4 nanoparticles were synthesized, dispersed in water, and investigated as heating agents for magnetic thermo-drug delivery and hyperthermia. The temperature profiles and infrared (IR) camera images of heat generation of CoFe2O4 nanoparticles under various AC magnetic fields of 127–700 Oe at 195, 231, and 266 kHz were measured using an IR thermacam, excluding the external AC magnetic field interruption. The CoFe2O4 nanoparticles were successfully dispersed in water using an 11-mercaptoundecanoic acid ligand exchange method to exchange the solvent used for synthesis of hexane for water. During the heating experiments, each of CoFe2O4 nanoparticle solutions reached a steady state where the temperature rose between 0.1 and 42.9 °C above ambient conditions when a magnetic field of 127–634 Oe was applied at 231 or 266 kHz. The heat generation was found to be dependent on the intensity of AC magnetic field and applied frequency. Therefore, the desired heating for magnetically triggered drug delivery or hyperthermia could be achieved in water-dispersed CoFe2O4 nanoparticles by adjusting the AC magnetic field and frequency.  相似文献   

4.
Properties of FeCo nanocrystalline intermetallic powders prepared by salt-matrix hydrogen reduction of a milled Fe2O3-Co3O4 mixture were investigated. The product of 72 ks ball-milling at 350 rpm was CoFe2O4 nanopowder. Reduction of this powder for 3.6 ks by hydrogen at 750 °C resulted in the formation of Fe0.67Co0.33 stoichiometric compound. Scanning electron microscopy, electron dispersive spectrometry, X-ray diffraction and vibrating sample magnetometry were used to characterize the nanopowder. Using a salt-matrix (NaCl as a dispersion medium) resulted in the decrease of the reduction temperature and improvement of the morphology and magnetic properties of the nanopowder. Dispersion of the ball-milled product in Hexan resulted in further improvements of the magnetic properties.  相似文献   

5.
Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni–NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2–CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (–COOH) functional groups were added to the SiO2–CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα–Bis(carboxymethyl)-l-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2–CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.  相似文献   

6.
Single domain magnetic CoFe2O4 nanoparticles with spinel structure were prepared by the coprecipitation method. Particles with size of 16, 20, 40 and 60 nm were synthesized by sintering the precursor at 500, 600, 800 and 900 °C, respectively. The magnetic hysteresis measurement of CoFe2O4 particles showed that particles were single domain particles with similar saturation magnetization (∼300 emu/cm3) at room temperature. The zeta potential study of suspensions (CoFe2O4-acetylacetone system) with various particle sizes showed the suspension systems had similar zeta potential values (∼40 mV). The effects of magnetic particle size on the suspension stability characterized by electrophoretic deposition yields and sediment volumes were studied. The suspension stability decreased with an increase in particle size and a flocculation threshold of particle radius a was found at 30 nm. A suspension stability theory approaching to the phenomenon was established. The theory based on the DLVO theory was developed by introducing an extra magnetic interaction force. Dormann model was adopted, in which the magnetic interactions of two spherical nanoparticles were investigated in terms of dipole-dipole interactions. Compared to DLVO, suspension's physical parameters not only zeta potential ζ and the Debye length 1/κ, but also particles' radius a brought about stable to flocculation transition in the theory.  相似文献   

7.
Magnetic nanocomposites formed by cobalt ferrite particles dispersed in a silica matrix were prepared by a sol-gel process. The effects of the thermal treatment temperature and the salt concentration on the structural and magnetic properties of the composites were investigated. By controlling these parameters, CoFe2O4/SiO2 nanocomposites with different crystallite size and magnetic properties were obtained. By increasing the annealing temperature and salt concentration, composites with a progressive increase in the coercive field and of the density of magnetization were produced. In particular, a nanocomposite, with a Fe/Si molar concentration of 21%, obtained by drying the gel at 150 °C and further annealing at 800 °C, has a coercivity of 2000 Oe, which is more than twice higher than the coercivity of bulk cobalt ferrite.  相似文献   

8.
CoFe2O4/Fe3O4 nano-composite ceramics were synthesized by Spark Plasma Sintering. The X-ray diffraction patterns show that all samples are composed of CoFe2O4 and Fe3O4 phases when the sintering temperature is below 900 °C. It is found that the magnetic properties strongly depend on the sintering temperature. The two-step hysteresis loops for samples sintered below 500 °C are observed, but when sintering temperature reaches 500 °C, the step disappears, which indicates that the CoFe2O4 and Fe3O4 are well exchange coupled. As the sintering temperature increases from 500 to 800 °C, the results of X-ray diffractometer indicate the constriction of crystalline regions due to the ion diffusion at the interfaces of CoFe2O4/Fe3O4 phases, which have great impact on the magnetic properties.  相似文献   

9.
A novel method is described for the preparation of superparamagnetic mesoporous maghemite (γ-Fe2O3)/silica (SiO2) composite microspheres to allow rapid magnetic separation of DNA from biological samples. With magnetite (Fe3O4) and silica nanoparticles as starting materials, such microspheres were synthesized by the following two consecutive steps: (1) formation of monodispersed organic/inorganic hybrid microspheres through urea-formaldedyde (UF) polymerization and (2) removal of the organic template and phase transformation of Fe3O4 to γ-Fe2O3 by calcination at elevated temperatures. The as-synthesized particles obtained by heating at temperature 300 °C feature spherical shape and uniform particle size (dparticle=1.72 μm), high saturation magnetization (Ms=17.22 emu/g), superparamagnetism (Mr/Ms=0.023), high surface area (SBET=240 m2/g), and mesoporosity (dpore=6.62 nm). The composite microsphere consists of interlocked amorphous SiO2 nanoparticles, in which cubic γ-Fe2O3 nanocrystals are homogeneously dispersed and thermally stable against γ- to α-phase transformation at temperatures up to 600 °C. With the exposed iron oxide nanoparticles coated with a thin layer of silica shell, the magnetic microspheres were used as a solid-phase adsorbent for rapid extraction of genomic DNA from plant samples. The results show that the DNA templates isolated from pea and green pepper displayed single bands with molecular weights greater than 8 kb and A260/A280 values of 1.60-1.72. The PCR amplification of a fragment encoding the endogenous chloroplast ndhB gene confirmed that the DNA templates obtained were inhibitor-free and amenable to sensitive amplification-based DNA technologies.  相似文献   

10.
Ni-ferrite (NiFe2O4) nanoparticles have been synthesized via a solid state reaction process. Ni and Fe bi-metallic nanoparticles in the form of Ni33Fe67 alloy nanopowder are first synthesized by simultaneous evaporation of the required amounts of pure Ni and Fe metals followed by rapid condensation of the evaporated metal flux into solid state by means of an inert gas, helium, using the process of inert gas condensation (IGC). In order to form the NiFe2O4 structure, as-synthesized samples (Ni33Fe67) are annealed for 12 h in ambient conditions at different annealing temperatures. Structural analyses show that NiFe2O4 starts to form at around 450 °C and gets progressively well defined with increasing annealing temperatures yielding particle with size ranging between 15 and 50 nm. Besides successfully forming NiFe2O4, NiO/Fe3O4 core/shell nanoparticles have also been synthesized by adjusting the annealing conditions. Three different structures, Ni33Fe67, NiO/Fe3O4, and NiFe2O4, obtained in this study are compared with respect to their structural and magnetic properties.  相似文献   

11.
Iron oxide magnetic nano-particles (MNPs) have been prepared in aqueous solution by a modified co-precipitation method. Surface modifications have been carried out using tetraethoxysilane (TEOS), triethoxysilane (TES) and 3-aminopropyltrimethoxysilane (APTMS). The uncoated and coated particle products have been characterized with transmission electron microscope (TEM), energy dispersive X-ray (EDX) spectroscopy, infrared (IR) and Raman spectroscopy, and thermal gravimetric analysis (TGA). The particle sizes were determined from TEM images and found to have mean diameters of 13, 16 and 14 nm for Fe3O4, TES/Fe3O4 and APTMS/Fe3O4, respectively. IR and Raman spectroscopy has been applied to study the effect of thermal annealing on the uncoated and coated particles. The results have shown that magnetite nano-particles are converted to maghemite at 109 °C and then to hematite by 500 °C. In contrast, the study of the effect of thermal annealing of micro-crystalline magnetite by IR spectroscopy revealed that the conversion to hematite began by 300 °C and that no maghemite could be identified as an intermediate phase. IR spectra and TGA measurements revealed that the Si-H and 3-aminopropyl functional groups in TES and APTMS coated magnetite nano-particles decomposed below 500 °C while the silica layer around the iron oxide core remained unchanged. The molecular ratio of APTMS coating to iron oxide core was determined to be 1:7 from the TGA data. Raman scattering signals have indicated that MNPs could be converted to maghemite and then to hematite using increasing power of laser irradiation in a manner similar to that observed for thermal annealing.  相似文献   

12.
Nearly monodisperse nanoparticles were synthesized by an environmentally benign low-temperature (140-180 °C) method involving pressure-induced decomposition of metal oleates in alcohol. XRD and TEM were employed in the characterization of the samples. In this study, Fe3O4, CoO, MnO, CoFe2O4, MnFe2O4, and a mixture of Ni, NiO, Ni2O3 nanoparticles, exhibiting various shapes and assemblies, were obtained.  相似文献   

13.
We have prepared composite magnetic core–shell particles using the process of soap-free emulsion polymerization and the co-precipitation method. The shell of the synthesized composite sphere is cobalt ferrite (CoFe2O4) nanoparticles and the core consists of poly(styrene-co-methacrylic acid) polymer. The mean crystallite sizes of the coated CoFe2O4 nanoparticles were controlled in the range of 2.4–6.7 nm by the concentration of [NH4+] and heated temperature. The magnetic properties of the core–shell spherical particles can go from superparamagnetic to ferromagnetic behavior depending on the crystalline sizes of CoFe2O4.  相似文献   

14.
Cobalt ferrite nanoparticles (CoFe2O4) have been synthesized using precipitation in water solution with polyethylene glycol as surfactant. Influence of various synthesis variables included pH, reaction time and annealing temperature on the magnetic properties and particle sizes has also been studied. Structural identification of the samples was carried out using Thermogravimetric and Differential thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy, High resolution transmission electron microscopy. Vibrating sample magnetometer was used for the magnetic investigation of the samples. Magnetic properties of nanoparticles show strong dependence on the particle size. The magnetic properties increase with pH of the precipitating medium and annealing temperature while the coercivity goes through a maximum, peaking at around 25 nm.  相似文献   

15.
We doped Ho3+ in CoFe1.95Ho0.05O4 spinel ferrite by mechanical alloying and subsequent annealing at different temperatures (600-1200 °C). We understood the structural and magnetic properties of the samples using X-ray diffraction, SEM, Thermal analysis (TGA and DTA), and VSM measurement. The samples have shown structural stabilization within cubic spinel phase for the annealing temperature (TAN)≥800 °C. Thermal activated grain growth kinetics has been accompanied with the substantial decrease in lattice strain. The gain size dependent magnetism is evident from the variation of magnetic moment, remanent magnetization and coercivity of the material. The paramagnetic to ferrimagnetic transition temperature TC (∼805 K) seems to be grain size independent in the present material. The magnetic nanograins, either single domain/pseudo-single domain (50-64 nm) or multi-domain (above 64 nm) regime, showed superparamagnetic blocking below Tm, which is below TC (805 K) and also well above the room temperature.  相似文献   

16.
The magnetic properties of 1.5 at% Fe-doped NiO bulk samples were investigated. The samples were prepared by sintering the corresponding precursor in air at temperatures between 400 and 800 °C for 6 h. The synthesis was by a chemical co-precipitation and post-thermal decomposition method. In order to allow a comparison, a NiO/0.76 at% NiFe2O4 mixture was also prepared. The X-ray diffraction pattern shows that the samples that were sintered at 400 and 600 °C remain single phase. As the sintering temperature increased to 800 °C, however, the sample becomes a mixture of NiO and NiFe2O4 ferrite phases. The samples were investigated by measuring their magnetization as a function of magnetic field. The samples sintered between 400 and 800 °C and the one mixed directly with NiFe2O4 nanoparticles show a coercivity value of Hc≈200, 325, 350 and 110 Oe, respectively. The magnetic properties of the samples depend strongly on the sintering temperature. Simultaneously, the field-cooling hysteresis loop shift also observed after cooling the sample sintered at 600 °C to low temperature suggests the possibility of the existence of a ferromagnetic/antiferromagnetic exchange coupling.  相似文献   

17.
Single phase zinc ferrite (ZnFe2O4) nanoparticles have been prepared by the coprecipitation method without any subsequent calcination. The effects of precipitation temperature in the range 20–80 °C on the structural and the magnetic properties of zinc ferrite nanoparticles were investigated. The crystallite size, microstructure and magnetic properties of the prepared nanoparticles were studied using X-ray diffraction (XRD), Fourier transmission infrared spectrum, transmission electron microscope (TEM), energy dispersive X-ray spectrometer and vibrating sample magnetometer. The XRD results showed that the coprecipitated nanoparticles were single phase zinc ferrite with mixture of normal and inverse spinel structures. Furthermore, ZnFe2O4 nanoparticles have the crystallite size in the range 5–10 nm, as confirmed by TEM. The magnetic measurements exhibited that the zinc ferrite nanoparticles synthesized at 40 °C were superparamagnetic with the maximum magnetization of 7.3 emu/g at 10 kOe.  相似文献   

18.
Superparamagnetic silica-coated magnetite (Fe3O4) nanoparticles with immobilized metal affinity ligands were prepared for protein adsorption. First, magnetite nanoparticles were synthesized by co-precipitating Fe2+ and Fe3+ in an ammonia solution. Then silica was coated on the Fe3O4 nanoparticles using a sol–gel method to obtain magnetic silica nanoparticles. The condensation product of 3-Glycidoxypropyltrimethoxysilane (GLYMO) and iminodiacetic acid (IDA) was immobilized on them and after charged with Cu2+, the magnetic silica nanoparticles with immobilized Cu2+ were applied for the adsorption of bovine serum albumin (BSA). Scanning electron micrograph showed that the magnetic silica nanoparticles with an average size of 190 nm were well dispersed without aggregation. X-ray diffraction showed the spinel structure for the magnetite particles coated with silica. Magnetic measurement revealed the magnetic silica nanoparticles were superparamagnetic and the saturation magnetization was about 15.0 emu/g. Protein adsorption results showed that the nanoparticles had high adsorption capacity for BSA (73 mg/g) and low nonspecific adsorption. The regeneration of these nanoparticles was also studied.  相似文献   

19.
Cobalt ferrite (CoFe2O4) nanoparticles embedded in amorphous silica can be synthesized by using tetraethylorthosilicate (TEOS) and metallic nitrates as precursors. A well-established silica matrix network provides nucleation locations for CoFe2O4 nanoparticles, thus confining their growth and aggregation. The structural and magnetic properties show strong dependence on the variation of particle size caused by annealing temperature and CoFe2O4 ratio, resulting in higher crystallization, saturation magnetization Ms and remanent magnetization Mr as the annealing temperature and CoFe2O4 ratio increase. But the variation of coercivity Hc is not in accordance with that of Ms and Mr, indicating that Hc is not determined by the size of CoFe2O4 nanoparticles only. The realization of the adjustable particle sizes and the controllable magnetic properties makes the applicability of CoFe2O4 even more versatile.  相似文献   

20.
Multi-functional magnetic, photoluminescent and photocatalytic CoFe2O4-ZnO nanocomposites were successfully synthesized by a collosol method. The average diameter of the prepared CoFe2O4-ZnO nanocomposites was 30±5 nm, and a diffusion layer was formed to link CoFe2O4 and ZnO. The saturation magnetization of the CoFe2O4-ZnO nanocomposites was 8.99 emu/g. Generation of ZnO from Zn(OH)2 collosol was nearly complete after thermal decomposition at about 380 °C. A photoluminescence emission peak was observed at 443 nm when excitated at 350 nm. Degradation of methyl orange is performed by CoFe2O4-ZnO nanocomposites under ultraviolet radiation, with a degradation rate of up to 93.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号