首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanostructured Fe50Co50 powders were prepared by mechanical alloying of Fe and Co elements in a vario-planetary high-energy ball mill. The structural properties, morphology changes and local iron environment variations were investigated as a function of milling time (in the 0-200 h range) by means of X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis and 57Fe Mössbauer spectroscopy. The complete formation of bcc Fe50Co50 solid solution is observed after 100 h milling. As the milling time increases from 0 to 200 h, the lattice parameter decreases from 0.28655 nm for pure Fe to 0.28523 nm, the grain size decreases from 150 to 14 nm, while the meal level of strain increases from 0.0069% to 1.36%. The powder particle morphology at different stages of formation was observed by SEM. The parameters derived from the Mössbauer spectra confirm the beginning of the formation of Fe50Co50 phase at 43 h of milling. After 200 h of milling the average hyperfine magnetic field of 35 T suggests that a disordered bcc Fe-Co solid solution is formed.  相似文献   

2.
EuFeO3 was prepared by mechanical alloying starting from europium and iron oxides. After 20 h of milling the resulting compound is pure EuFeO3. Samples were studied as a function of milling period using XRD, Mössbauer, SEM, and magnetic measurements. Mössbauer spectroscopy was used to probe both the transition metal and the rare-earth sites. Results are compared with previous works on EuFeO3 prepared by different methods.  相似文献   

3.
Nanocrystalline Fe50Ni50 alloy samples were prepared by the mechanical alloying process using planetary high-energy ball mill. The alloy formation and different physical properties were investigated as a function of milling time, t, (in the 0–50 h range) by means of the X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), Mössbauer spectroscopy and the vibrating sample magnetometer (VSM). The complete formation of γ-FeNi is observed after 24 h milling. When milling time increases from 0 to 50 h, the lattice parameter increases towards the Fe50Ni50 bulk value, the grain size decreases from 67 to 13 nm, while the strain increases from 0.09% to 0.41%. Grain morphologies at different formation stages were observed by SEM. Saturation magnetization and coercive fields derived from the hysteresis curves are discussed as a function of milling time.  相似文献   

4.
A high purity Fe50Ni50 nanometric alloy was synthesized by ultra rapid autocatalytic chemical reduction of the corresponding transition metal ions in an aqueous solution. The ratio of metal concentration in solution is preserved in the precipitated powder alloy and no metal segregation has been detected. The alloy was characterized as a nanostructured chemically disordered taenite phase by X-ray diffraction (XRD) and Mössbauer spectroscopy (MS). Transmission electron microscopy (TEM) showed that the as prepared alloy contained spherical particles with 96 nm mean diameter size. The particles are composed of crystallites (of ∼15 nm size) and a predominant disordered interfacial region. A thermal treatment of 673 K/2 h produced a structural relaxation with a significant narrowing in the XRD and Mössbauer lines with a exothermic flow in the DSC signal and an increase in the crystallite size to 30 nm.  相似文献   

5.
The xZnO-(1−x)α-Fe2O3 nanoparticles system has been obtained by mechanochemical activation for x=0.1, 0.3 and 0.5 and for ball milling times ranging from 2 to 24 h. Structural and morphological characteristics of the zinc-doped hematite system were investigated by X-ray diffraction (XRD) and Mössbauer spectroscopy. The Rietveld structure of the XRD spectra yielded the dependence of the particle size and lattice constant on the amount x of Zn substitutions and as function of the ball milling time. The x=0.1 XRD spectra are consistent with line broadening as Zn substitutes Fe in the hematite structure and the appearance of the zinc ferrite phase at milling times longer than 4 h. Similar results were obtained for x=0.3, while for x=0.5 the zinc ferrite phase occurred at 2 h and entirely dominated the spectrum at 24 h milling time. The Mössbauer spectra corresponding to x=0.1 exhibit line broadening as the ball milling time increases, in agreement with the model of local atomic environment. Because of this reason, the Mössbauer spectrum for 12 h of milling had to be fitted with two sextets. For x=0.3 and 12 milling hours, the Mössbauer spectrum reveals the occurrence of a quadrupole-split doublet, with the hyperfine parameters characteristic to zinc ferrite, ZnFe2O4. This doublet clearly dominates the Mössbauer spectrum for x=0.5 and 24 h of milling, demonstrating that the entire system of nanoparticles consists finally of zinc ferrite. As ZnO is not soluble in hematite in the bulk form, the present study clearly demonstrates that the solubility limits of an immiscible system can be extended beyond the limits in the solid state by mechanochemical activation. Moreover, this synthesis route allowed us to reach nanometric particle dimensions, which would make the materials very important for gas sensing applications.  相似文献   

6.
Nanoparticles of Fe and Fe50Ni50 were synthesized by inert gas-condensation method under pure helium atmosphere. The prepared nanoparticles samples were examined by high-resolution transmission electron microscopy, X-ray diffraction and Mössbauer spectroscopy. The synthesized nanoparticles consisted of core-shell type structure nearly spherical shape with a size comprised within the range 4-70 nm and they occur as clusters or chains. The Mössbauer measurements as well as X-ray diffraction showed, in both cases, the presence of iron-oxide phases.  相似文献   

7.
B2-Fe47Al53 intermetallics has been produced by mechanical alloying in a planetary ball mill, using elemental Fe, Al and Ni powder mixture. The microstructural and magnetic properties of the mechanically alloyed Fe50Al40Ni10 powdered samples were investigated by X-ray diffraction and 57Fe Mössbauer spectrometry at 300 and 77 K. As resulted from the X-ray diffraction studies, the ordered B2 structure was formed in the Fe50Al40Ni10 powder, together with the bcc αi-Fe(Al, Ni) (i = 1, 2) solid solutions. Further milling led to a partial disordering of B2-Fe47Al53; it has undergone an order–disorder transition which is characterized by an expansion of the volume Δa0 (lattice disorder) and a magnetic transition from the paramagnetic to ferromagnetic state which is characterized by strong ferromagnetic interactions in the alloy. The nanocrystalline bcc αi-Fe(Al, Ni) solid solution was ferromagnetic with a mean crystallite size of 6 nm.  相似文献   

8.
Mössbauer spectra and magnetic measurement of Ni0.7Mn0.3Gd0.1Fe1.9O4 ferrite were investigated by Oxford MS-500 Mössbauer spectrometer and superconducting quantum interference device (SQUID) magnetometer with a field 5 T. Ni0.7Mn0.3Gd0.1Fe1.9O4 nanoparticles have a considerable coercivity of 1040 Oe when the test temperature is reduced to 2 K. Mössbauer spectra show that Ni0.7Mn0.3Gd0.1Fe1.9O4 nanoparticles exhibit superparamagnetism at room temperature and ferrimagnetism at 77 K.  相似文献   

9.
CoAl0.2Fe1.8O4/SiO2 nanocomposites were prepared by sol–gel method. The effects of annealing temperature on the structure and magnetic properties of the samples were studied by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and Mössbauer spectroscopy. The results show that the CoAl0.2Fe1.8O4 in the samples exhibits a spinel structure after being annealed. As annealing temperature increases from 800 to 1200 °C, the average grain size of CoAl0.2Fe1.8O4 in the nanocomposites increases from 5 to 41 nm while the lattice constant decreases from 0.8397 to 0.8391 nm, the saturation magnetization increases from 21.96 to 41.53 emu/g. Coercivity reaches a maximum of 1082 Oe for the sample annealed at 1100 °C, and thereafter decreases with further increasing annealing temperature. Mössbauer spectra show that the isomer shift decreases, hyperfine field increases and the samples transfer from mixed state of superparamagnetic and magnetic order to the completely magnetic order with annealing temperature increasing from 800 to 1200 °C.  相似文献   

10.
Arrays of Fe61Co27P12 nanowire with an aspect ratio about 70 were prepared in anodic aluminum oxide templates by electrodeposition. The influences of annealing temperature on structure and magnetic properties of Fe61Co27P12 nanowires were studied. When the specimens were annealed below 400 °C, there are no obvious changes in structure except relaxation. With the annealing temperature increasing from 400 to 600 °C, the Fe-Co phase is detected by X-ray diffraction and Mössbauer spectra. The crystalline fraction and hyperfine field can be derived from Mössbauer spectra. The room temperature magnetic hysteresis loops show that the coercivity and squareness of the nanowire arrays in parallel to the wire axis increase with the increasing of annealing temperature, which mainly attributes to the strengthening of anisotropy.  相似文献   

11.
The linear and nonlinear low field AC susceptibilities of Zn0.75Co0.25Fe0.5Cr1.5O4 show peaks due to non-critical contributions, which mask the peak due to spin glass ordering. They extend into the region of temperatures in which Mössbauer spectra do not show any magnetic component. When a DC field of 200 Oe suppresses the non-critical contributions, peak due to spin glass ordering is clearly visible. The spin glass ordering is thus shown to be a thermodynamic transition. The critical exponent is found to fall within the range found using other spin glasses. Mössbauer spectra in zero fields provide TSG, which agrees with the peak temperature of AC susceptibilities in the absence of non-critical contributions. 〈SZ〉 determined using Mössbauer spectra does not show any anomaly. In the presence of a field of 5 T, the spectra show SG ordering at 4.2 K, which converts into ferrimagnetic ordering at higher temperatures.  相似文献   

12.
Thermo-gravimetric, differential scanning calorimetry and comprehensive 57Fe Mössbauer spectroscopy studies of amorphous and crystalline ferromagnetic glass coated (Co0.2Fe0.8)72.5Si12.5B15 micro-wires have been recorded. The Curie temperature of the amorphous phase is TC(amorp) ∼730 K. The analysis of the Mössbauer spectra reveals that below 623 K the easy axis of the magnetization is axial-along the wires, and that a tangential or/and radial orientation occurs at higher temperatures. At 770 K, in the first 4 hours the Mössbauer spectrum exhibits a pure paramagnetic doublet. Crystallization and decomposition to predominantly α-Fe(Si) and Fe2B occurs either by raising the temperature above 835 K or isothermally in time at lower temperatures. Annealing for a day at 770 K, leads to crystallization. In the crystalline material the magnetic moments have a complete random orientation. After cooling back to ambient temperature, both α-Fe(Si) and Fe2B in the glass coated wire show pure axial magnetic orientation like in the original amorphous state. The observed spin reorientations are associated with changes in the stress induced by the glass coating.  相似文献   

13.
The sample of FeSc2S4 was prepared by solid reaction method. The crystallographic structure and the magnetic properties of the fabricated compound were investigated by X-ray, and superconducting quantum interference device (SQUID) magnetometer and Mössbauer spectroscopy. The polycrystalline FeSc2S4 confirmed the normal cubic spinel structure (space group Fd3m). The lattice constants a0 and anion parameter u are 10.519 Å and 0.255, respectively. The Mössbauer spectroscopy has been studied for the FeSc2S4 at various temperatures, ranging from 4.2 K to room temperature. The spectra consist of two doublets at 4.2 K while a single line at room temperature. It is noticeable that the Mössbauer spectra of two doublet patterns with large electric quadrupole splitting (ΔEQ) remain over the Néel temperature. Those are interpreted as a result of large electric quadrupole interaction compared to magnetic dipole interaction. The magnetic susceptibility measurements were performed with a SQUID magnetometer for temperatures 2<T<320 K, in external fields up to 5 kOe. Magnetic behavior shows antiferromagnetic behavior and the magnetic superexchange interactions between the Fe ions are weakly antiferromagnetic. The paramagnetic susceptibilities follow Curie–Weiss (CW) law with CW temperature ΘCW=−100 K, and frustration parameter f=−ΘCW/TN is of the order of 1000. We conclude that two sublattices are coupled antiferromagnetically, leading to strong frustration effects.  相似文献   

14.
The effect of the partial substitution of La by Gd atoms on the magnetic entropy change of the LaFe11.4Si1.6 metamagnetic compound was studied using Mössbauer spectroscopy and DC magnetization measurements. A considerable enhancement of the magnetic entropy change was observed in Gd-substituted compounds, while the Curie temperature slightly decreased with the increase of the Gd content. For the 20% Gd-substituted compound, a giant magnetic entropy change value of −16 J/kg K at 190 K was attained under a field varying from 0 to 2 T.  相似文献   

15.
Nanostructured ferroxide particles with initial formula Ni0.5Zn0.5Fe2O4 are investigated. The aim was to explore the monodomain and the superparamagnetic states of the ferrospinel and the impact of the surface magnetic disorder on the magnetization processes. Mössbauer spectroscopy (MöS) demonstrated that the ion distribution follows the general formula (Zn0.5Fe0.5)A[Ni0.5Fe1.5]BO4, where A is the tetrahedral and B, the octahedral sublattice. MöS in an external magnetic field (5 T) at 4.2 K shows non-collinearity of the sublattices’ magnetic moments and deviations in the hyperfine magnetic field that could be related to a canting effect. Magnetic measurements were applied to characterize the temperature behavior of the magnetic properties and the a.c. complex magnetic susceptibility.  相似文献   

16.
Differential scanning calorimetry, X-ray diffraction and room temperature Mössbauer spectrum measurements of Fe73.5Cu1Nb3Si13.5B9 (Finemet) alloy have been carried out in order to study its structural and magnetic properties as a function of annealing temperature. The DSC profile of as-quenched Finemet showed two exothermic peaks at 530 and 702 °C, corresponding to two crystallization processes. The Finemet alloy remains amorphous at 450 °C with one broad peak in XRD pattern and one broad sextet in Mössbauer spectrum. When the Finemet alloy was annealed at 550 °C, only well indexed body-center-cubic phase was detected. After being annealed at 650 and 750 °C, the XRD patterns showed the coexistence of α-Fe(Si) and Fe-B intermetallic phases with the increase in XRD peak intensities, indicating the growth of crystallites and the decomposition of Fe73.5Cu1Nb3Si13.5B9 alloy at elevated temperatures. The Mössbauer spectra of annealed Finemet alloy could be fitted with 4 or 5 sextets and one doublet at higher annealing temperatures, revealing the appearance of different crystalline phases corresponding to the different Fe sites above the crystallization temperature. The appearance of the nanocrystalline phases at different annealing temperatures was further confirmed by the recoilless fraction measurements.  相似文献   

17.
We studied by Mössbauer spectroscopy the Na0.82CoO2 compound using 1% 57Fe as a local probe which substitutes for the Co ions. Mössbauer spectra at T=300 K revealed two sites which correspond to Fe3+ and Fe4+. The existence of two distinct values of the quadrupole splitting instead of a continuous distribution should be related with the charge ordering of Co+3, Co+4 ions and ion ordering of Na(1) and Na(2). Below T=10 K part of the spectrum area, corresponding to Fe4+ and all of Fe3+, displays broad magnetically split spectra arising either from short-range magnetic correlations or from slow electronic spin relaxation.  相似文献   

18.
Melted Fe50Mn10Al40 alloy powder with particle size less than 40 μm was characterized at room temperature by XRD, SEM and XPS; and at low temperatures by Mössbauer spectrometry, ac susceptibility, and magnetization analysis. The results show that the sample is BCC ferromagnetic but with a big contribution of paramagnetic sites, and presents super-paramagnetic and re-entrant spin-glass phases with critical temperatures of 265 and 35 K, respectively. The presence of the different phases detected is due to the disordered character of the sample and the competitive magnetic interactions. The obtained values of the saturation magnetization and the coercive field as a function of temperature present a behavior which indicates a ferromagnetic phase. However, the behavior of the FC curve and that of the coercive field as a function of temperature suggest that the dipolar magnetic interaction between particles contributes to the internal magnetic field in the same way as was reported for nanoparticulate powders.  相似文献   

19.
The microstructure and magnetic properties, i.e. the initial magnetic susceptibility, its disaccommodation, core losses and approach to ferromagnetic saturation of the bulk amorphous and partially crystallized Fe61Co10Zr2.5Hf2.5Nb2W2B20 alloy are studied. From X-ray, Mössbauer spectroscopy and electron microscopy studies we have stated that all samples in the as-quenched state are fully amorphous. However, after annealing the samples at 850 K for 30 min the crystalline α-FeCo grains embedded in the amorphous matrix are found. Moreover, from Mössbauer spectra analysis we have stated that the crystalline phase in those samples exhibits the long-range order. The alloy in the as-quenched state shows good thermal stability of the initial magnetic susceptibility. Furthermore, the intensity of the magnetic susceptibility disaccommodation in the rod is lower than in the ribbon. It is due to low quenching rate during the rod preparation which involves the reduction of free volumes. From the analysis of the isochronal disaccommodation curves, assuming the Gaussian distribution of relaxation times, we have found that activation energies of the elementary processes responsible for this phenomenon range from 1.2 to 1.4 eV. After the annealing of the samples the initial susceptibility slightly enhances and disaccommodation drastically decreases. From high-field magnetization studies we have learned that the size of structural defects depends on the quenching rate (the shape of the samples) and changes after annealing.  相似文献   

20.
Microstructure by X-ray diffraction and Mössbauer spectroscopy, and isothermal magnetic entropy changes in the bulk amorphous Fe60Co5Zr8Mo5W2B20 alloy in the as-quenched state and after annealing at 720 K for 15 min are studied. The as-cast and heat treated alloy is paramagnetic at room temperature. The quadrupole splitting distribution is unimodal after annealing indicating the more homogenous structure in comparison with that for the as-cast alloy. Curie temperature slightly increases after annealing from 265±2 K in the as-quenched state to 272±2 K and the alloy exhibits the second order magnetic phase transition. The maximum of isothermal magnetic entropy changes appears at the Curie points and is equal to 0.30 and 0.42 J/(kg·K) for the alloy in the as-quenched state and after annealing, respectively. In the paramagnetic region the material behaves as a Curie-Weiss paramagnet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号