首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
First principles calculations have been performed to study the electronic and magnetic structures of double perovskites Ca2MWO6 (M=Co, Ni) using full potential linearized augmented plane wave method. The density of states and spin magnetic moments are calculated and we have examined the valence states of Co, Ni and W ions. The results predict the half-metallic ground state of Ca2CoWO6 and the insulating nature of Ca2NiWO6.  相似文献   

2.
We present ab-initio investigation of the electronic and magnetic structure of TM(0 0 1) surfaces and TM/Cu(0 0 1) systems (TM=Fe, Co, Ni, Cu) with and without hydrogen adsorbed layer. The adsorption energy of hydrogen atom is found to be energetically more stable above the surface layer of Ni(0 0 1) surface than other TM(0 0 1) surfaces. The adsorption energies of hydrogen on TM/Cu(0 0 1) systems are larger than those on TM(0 0 1) surfaces. The relaxed geometries show that hydrogen has a strong influence on the interlayer distance. Furthermore, a marked reduction of Fe, Co, and Ni surface magnetic moments to 2.54, 1.41 and 0.25 μB, respectively, is obtained due to the presence of hydrogen.  相似文献   

3.
The magnetic properties and electronic structures of ferromagnetic nanowires (FM=Fe, Co and Ni) encapsulated inside a zigzag (12,0) boron nitride nanotube (BNNT) are investigated by first-principle calculations. The relaxed geometry structures of FM/BNNT systems have only slightly changed. Formation energy analysis shows that the combining processes of Co/BNNT and Ni/BNNT systems are exothermic, and therefore the Co and Ni nanowires can be encapsulated into a semiconducting zigzag (12,0) BNNT and form stable hybrid structures. The charges are transferred from ferromagnetic nanowires to more electronegative BNNTs, and the formed FM–N bonds have covalent bond characteristics. The magnetic moments of FM/BNNT systems are smaller than those of the freestanding ferromagnetic nanowires, especially for the atoms on the outermost shell of the nanowires. The stable FM/BNNT systems exhibit higher magnetic moments, which can be useful for a wide variety of next-generation nanoelectronic device components.  相似文献   

4.
Quaternary Heusler alloys Fe1.5M0.5CoSi with M=V, Cr, Mn and Fe have been investigated theoretically and experimentally. All of these samples crystallize in the ordered Heusler-type structure. The calculated electronic structure shows a pseudogap around EF in the minority spin states of Fe2CoSi. With the substitution of low-valent atoms for Fe, the majority antibonding peak is shifted to higher energy and a minority gap around the Fermi level is opened. High spin polarization ratio is obtained in Fe1.5M0.5CoSi (M=V, Cr, Mn) alloys. The calculated total spin moments decrease with decreasing number of valence electrons and follow the Slater-Pauling curve, which agree with the experimental results well. The Curie temperature decreases as M atom varies from Fe to V, but is always higher than 650 K, which is suitable for technical applications.  相似文献   

5.
The electronic and magnetic structures of ordered double perovskites Ba2TMoO6 (T=V, Cr, Mn, Fe and Co) are systematically investigated by means of the first-principle linear muffin-tin orbitals with the atomic-sphere approximation (LMTO-ASA) method. The calculations are performed by using the both local spin density approximation (LSDA) and the LSDA+U Coulomb interaction schemes. The results show a half-metallic ferrimagnetic ground states for T=Cr, Fe and Co in LSDA+U treatment, whereas half-metallic ferromagnetic character is observed for T=V. For T=Mn, insulating ground state is obtained, stabilized in the antiferromagnetic state. The LSDA+U calculations yield better agreement with the theoretical and the experimental results than do the LSDA.  相似文献   

6.
董艳锋  李英 《计算物理》2016,33(4):490-498
采用基于密度泛函理论的第一性原理平面波赝势法计算不同过渡金属(V, Cr, Mn, Fe, Co, Ni)掺杂GaN的电子结构及光学性质,分析掺杂对电子结构及光学性质的影响.结果表明,过渡金属掺杂在GaN的禁带中引入杂质能带,除掺Fe体系外其它掺杂体系都表现为半金属性.除掺Fe和Ni体系在低能区没有出现光吸收外,其它体系均在低能区杂质能级处出现光吸收.  相似文献   

7.
The first-principles calculations are performed to investigate the mechanical properties and electronic structure of TiC, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, TiC0.75N0.25 and TiN. Density functional theory and ultrasoft pseudopotentials are used in this study. From the formation energy, it is found that nitrogen can increase the stability of TiC. The calculated elastic constants and elastic moduli of TiC compare favorably with other theoretical and experimental values. Tungsten and nitrogen are observed to significantly increase the bulk, shear and Young's modulus of TiC. Through the analysis of B/G and Cauchy pressure, tungsten can significantly improve the ductility of TiC. The electronic structure of TiC, TiN, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, and TiC0.75N0.25 are used to describe nonmetal–metal and metal–metal bonds. Based on the Mulliken overlap population analysis, the hardness values of TiC, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, TiC0.75N0.25 and TiN are estimated.  相似文献   

8.
Elastic properties, thermal expansion coefficients and electronic structures of Ti0.75X0.25C carbides (X=W, Mo, Ta, Nb, V, Hf, Zr, Cr and Al) were systematically investigated using ab initio density functional theory (DFT) calculations. The calculated elastic moduli, electronic structures and thermal expansion coefficients α(T) of pure TiC are in good agreement with experimental data and other DFT calculations. Based on a phenomenological formula, the trends of elastic properties and ductile/brittle behavior of Ti0.75X0.25C were analyzed. It was found that alloying elements W, Mo, Ta, Nb, V and Hf can increase elastic moduli, while Zr, Cr and Al reduce moduli. The nearly free electron model and Debye approximation were applied in the evaluation of α(T). The anharmonic effect was taken into account by including volume-dependent elastic moduli and Debye temperature. Results show that alloying additions of 3d V, 4d Zr and Mo slightly reduce α(T), while 3d Cr increases α(T), Al, 4d Nb, 5d Hf and W almost keep α(T) unchanged in Ti0.75X0.25C at high temperatures. The electronic structures of Ti0.75X0.25C were calculated and analyzed, and the electronic density of states was used to interpret variations of elastic properties and ductile/brittle behavior induced by alloying additions.  相似文献   

9.
Magnetic and electronic structure calculations are performed for Mn2As with antiferromagnetic (AFM), ferromagnetic (FM), and ferrimagnetic (FIM) spin ordering, using the full-potential linearized augmented plane-wave (FLAPW) method based on the generalized gradient approximation (GGA). It is shown that AFM is the magnetic ground state of Mn2As, which is in agreement with the experimental observations. At a low temperature (0 K), AFM-FIM transition is also predicted which is consistent with the previous predictions. The ground state stability of the magnetic structure of Mn2As is attributed to the nearest Mn (I) and Mn (II) antiferromagnetic interaction. The calculated magnetic moment of Mn (II) is found to be in good agreement with the neutron diffraction experiment while there is a disagreement for the magnetic moment of Mn (I). The different magnetic moments are reflected in the electronic structures of Mn2As and the exchange splitting between Mn atoms is shown to be an intra-atomic effect.  相似文献   

10.
We report the electronic structure of Cd(TM)O2 (TM=Cr, Mn, Fe, Co, Ni) in the chalcopyrite structures. From this study we find that Cd(TM)O2 is a half-metallic ferromagnetic compound. From the energy consideration we find that Cd(TM)O2 is more stable in chalcopyrite structure rather than in rock salt structure. A careful analysis of the spin density reveals the ferromagnetic coupling between the p-d states and the cation dangling-bond p states, which is believed to be responsible for the stabilization of the ferromagnetic phase. The calculated heat of formation, bulk modulus and cohesive energy are reported.  相似文献   

11.
In this article we present a concise report on our studies on the magnetic behavior and structural arrangements of the inverse spinel Zn7−xMxSb2O12 system (M=Ni, Co). Studies on the temperature dependence of the magnetization (M) of several samples in this system showed the occurrence of a spin-glass-like state in temperatures around 10 K. The capability of this system to hold magnetic ions in either octahedral and/or tetrahedral positions is responsible for the occurrence of competing ferromagnetic and antiferromagnetic interactions. This condition is likely to cause the appearance of the observed spin-glass-like behavior.  相似文献   

12.
We have made a first principles study to investigate density of states, band structure, the dielectric function and absorption spectra of wurtzite Mg 0.25 Zn 0.75 O. The calculation is carried out in a-axis and c-axis strain changing in the range from 0.3 to -0.2 in intervals of 0.1. The results calculated from density of states show that the bottom of conduction band is always dominated by Zn 4s and the top of valence band is always dominated by O 2p in a-axis and c-axis strain. Zn 4s will shift to higher energy range when a-axis strain changes in the range from 0.3 to 0, and then shift to lower energy range when a-axis strain changes in the range from 0 to -0.2. But Zn 4s will always shift to higher energy range when c-axis strain changes in the range from 0.3 to -0.2. The variations of band gap calculated from band structure and absorption spectra are also investigated, which are consistent with the results obtained from density of states. In addition, we analyse and discuss the imaginary part of the dielectric function ε 2 .  相似文献   

13.
From the results of first principles tight-binding linear muffin-tin orbital (TB-LMTO) calculations, half-metallic ferromagnetism is proposed in Zn(TM)O2 with a chalcopyrite structure. The calculated electronic and magnetic property shows that consistent with the integer value for the total magnetic moment, half metallicity is obtained for ZnCrO2, ZnMnO2, ZnFeO2, ZnCoO2 and ZnNiO2. A careful analysis of the spin density reveals the ferromagnetic coupling between the p–d states and the cation dangling-bond p states, which is believed to be responsible for the stabilization of the ferromagnetic phase. The calculated heat of formation, bulk modulus and cohesive energy are reported.  相似文献   

14.
 The structural, electronic and optical properties of MnHg(SCN)4 and FeHg(SCN)4 were studied by means of quantum-mechanical calculations based on the density-functional theory and pseudopotential method. The lattice constants can be compared with the experimental values when the effects of temperature are considered. The peaks of partial density of states of S, C, N and Hg of FeHg(SCN)4 have a tendency of shifting to the higher energy levels relative to those of MnHg(SCN)4. The distributions of the 3d electronic states in the transition metal atoms show quite large difference and decide different optical properties. We found that absorptional peaks of FeHg(SCN)4 lag behind those of MnHg(SCN)4 and the peak in the infrared range has a higher absorptional intensity, which are in accord with the experimental results. By analyzing the distributions and transitions of the 3d electronic states, we explained the different absorption phenomena.  相似文献   

15.
《Current Applied Physics》2015,15(11):1324-1331
We have theoretically investigated the structural, elastic, electronic and magnetic properties of Be0.75Co0.25Y (YS, Se and Te) alloys, in their zinc-blend phase. This study is carried out by using the full-potential augmented plane wave plus local orbitals method within the density functional theory. Foe computing the exchange-correlation potential, the Wu and Cohen generalized gradient approximation is employed to calculate structural and elastic properties whereas the modified Becke and Johnson potential local density approximation is utilized to examine electronic and magnetic properties. By minimizing the total energy in paramagnetic (PM) and ferromagnetic (FM) phases, it is found the studied compounds are stable in FM structure. The mechanical behavior of the studied compounds is reported with the calculation of shear modulus, Young's modulus, and Poisson's ratio provides. Such mechanical aspects might be useful for the experimentalists to study the mechanical properties upon alloying BeY compounds with Co. We also compute electronic structures, density of states (total and partial), pd-exchange splitting and magnetic moments. Moreover, bond nature is studied by estimating the spin polarized charge densities of Be0.75Co0.25Y (YS, Se and Te).  相似文献   

16.
17.
A SAXS study was undertaken on Fe75TM5B20 amorphous alloys (TMTi, V, Cr, Mn, Fe, Co, Ni) to prove the effects of the substituting metals on structural homogeneity of the systems. A density-density correlation extending up to 20 Å belongs to Fe-, Ni- and Co-containing alloys whereas the absence of a medium-range order characterizes the texture of the remaining alloys. A net correspondence was found between these structural conditions and the isothermal behavior of the resistivity.  相似文献   

18.
The electronic structure and magnetic properties of B-based Heusler alloys Fe2YB (Y=Ti, V, Cr and Mn) have been studied theoretically. These alloys are all ferrimagnets except for Fe2VB. The latter has 24 valence electrons and is a paramagnetic semimetal. Fe2CrB is predicted to be half-metals at equilibrium lattice constant. The spin polarization of Fe2MnB is also quite high. The calculated total moments are 1.00 μB for Fe2CrB and 2.04 μB for Fe2MnB. In Fe2CrB and Fe2MnB, the total moments are mainly determined by the partial moment of Cr or Mn. The Fe moment is relatively small and antiparallel to that of Cr or Mn. Under uniform lattice distortion, the half-metallicity of Fe2CrB is more stable than Fe2MnB, which is related to the detailed DOS structure of them near EF.  相似文献   

19.
Using first-principles calculations based on density functional theory, we investigated systematically the electronic structures and magnetic properties of Cr monodoped and (Cr, Al) codoped in ZnO. The results indicate that Cr monodoped in ZnO favors a spin-polarized state with a total magnetic moment of 7.50μB per supercell and the magnetic moment mainly comes from the unpaired 3d electrons of Cr atoms. In addition, it was found that the ferromagnetic exchange interaction between Cr atoms is short-ranged in Cr monodoped ZnO. Interestingly, the ferromagnetic stability can be enhanced significantly by codoping AlZn. We think that the enhancement of ferromagnetic stability should be attributed to the additional electrons introduced by AlZn codoping.  相似文献   

20.
采用密度泛函理论(DFT)中的广义梯度近似(GGA)方法对M@C_(20)H_(20)(M=Sc,V,Cr,Mn,Fe,Co,Ni)几何结构和电子性质进行了计算研究.几何结构优化发现,过渡金属原子M内掺到C_(20)H_(20)笼时,都稳定于碳笼中心.能隙和内掺能计算发现,M@C_(20)H_(20)的热力学稳定性随着M原子序数的增大而逐渐减弱,内掺M原子使得其动力学稳定性大幅度下降,但是其中Ni@C_(20)H_(20)结构仍然具有良好的热力学和动力学稳定性,其有望在实验中被成功合成出来.电子性质研究发现,随着M原子序数的逐渐增大,M原子对M@C_(20)H_(20)前线轨道的贡献也越来越大,M@C_(20)H_(20)(M=Sc,V,Cr,Mn,Fe,Co)都具有一定的磁矩,而Ni@C_(20)H_(20)为闭壳层结构,磁矩为零.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号