首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Magnetization isotherms for polycrystalline TbMnGe and DyMnGe compounds were measured at the temperature 4.2 K in pulsed magnetic fields (up to 360 kOe). The received isotherms demonstrate the appearance of metamagnetic transitions at low temperatures. Both compounds crystallize in the orthorhombic TiNiSi-type structure. It was found that the magnetic phase transitions with a destruction of ferrimagnetic spiral structure occur in the TbMnGe and DyMnGe compounds in high magnetic fields. An attempt was undertaken to explain the nature of these transitions using the results of the powder neutron diffraction and the qualitative estimation of the exchange interaction values on the basis of the molecular field theory.  相似文献   

2.
沈斌  袁辉球 《物理》2020,49(9):570-578
量子相变广泛存在于关联电子材料体系中,与非常规超导和奇异金属行为有着紧密的联系。近年来,人们对量子相变的认识正在不断深入,不同类型的量子相变相继被发现。揭示量子相变的普适分类,发展和完善量子相变理论,探索量子临界点附近的呈展量子态及其产生机理是当前量子相变研究的热点。文章简要介绍磁性量子相变的一些最新研究进展以及面临的挑战。  相似文献   

3.
孙培杰  赵恒灿 《物理》2020,49(9):579-585
近藤效应和RKKY交换相互作用的竞争决定了多数重费米子化合物的基态性质。通过压力、磁场等非热力学参量调控,该类材料能够在绝对零温附近实现费米液体和磁有序相之间的连续转变,提供了研究量子相变的理想平台。另一方面,在绝缘的量子磁体中,自旋阻挫引起的量子涨落抑制低温下长程磁有序的发生,导致自旋液体相等新奇物态的产生。在近藤晶格中引入自旋阻挫将给重费米子材料提供一个新的调控维度,深刻改变该类材料的量子临界相图,是重费米子材料领域的一个新颖研究方向。文章首先介绍阻挫重费米子体系的研究背景,然后针对CePdAl的物性展开讨论,探讨阻挫对重费米子材料量子临界物性的影响以及量子临界相的普适性。  相似文献   

4.
5.
The thermal expansion and magnetostriction of polycrystalline sample of the ErMn6Sn6 intermetallic compound with hexagonal HfFe6Ge6-type structure are investigated in the temperature range of 77 K to above 400 K. The thermal expansion measurement of the sample shows anomalous behavior around its TN=340 K. The isofield curves of volume magnetostriction also reveal anomalies at paramagnetic-antiferromagnetic and antiferromagnetic-ferrimagnetic phase transitions. In the antiferromagnetic state, the transition to ferrimagnetism can be induced by an applied magnetic field. The threshold field for the metamagnetic transition Hth increases from 0.18 T at 84 K to about 1 T around 220 K, and then decreases monotonously to TN. This behavior is well consistent with that observed earlier on magnetization curves attributed to exchange-related metamagnetic transition rather than the anisotropy-related one. Furthermore, the low Hth values suggest that the Mn-Mn coupling in ErMn6Sn6 is not so strong. The experimental results obtained are discussed in the framework of two-magnetic sublattice by bearing in mind the lattice parameter dependence of the interlayer Mn-Mn exchange interaction in this layered compound. From the temperature dependence of magnetostriction values and considering the magnetostriction relation of a hexagonal structure, we attempt to determine the signs of some of the magnetostriction constants for this compound.  相似文献   

6.
We studied the thermal expansion and magnetostriction of polycrystalline samples of GdMn6Sn6 intermetallic compound with hexagonal HfGe6Fe6-type structure in the temperature range of 77-520 K. The thermal expansion measurement of the sample shows anomalous behavior around its TC=434 K and TM=309 K, possibly the point of collapse-like reduction of Mn moments. In addition, the isofield curves of anisotropic and volume magnetostriction reveal anomalies around paramagnetic to ferrimagnetic phase transition. The obtained experimental results are discussed in the framework of two-magnetic sublattices by bearing in mind the lattice parameter dependence of interlayer Mn-Mn exchange interaction in this layered compound. From the temperature dependence of magnetostriction values and considering the magnetostriction relation of a hexagonal structure, we attempt to determine the signs of some of the magnetostriction constants as well as a comparison of their orders of magnitude for this compound.  相似文献   

7.
 对采用自悬浮定向流法制备的Cu4Al纳米微粉进行了差热分析(DTA),发现在258,423和537 ℃存在不同量值的吸热峰。参照DTA曲线上吸热峰所对应的温度,分别对粉末样品进行了模拟退火实验,热处理后样品的X射线衍射(XRD)分析证实258和423 ℃处无结构相变发生,537 ℃处的吸热峰则对应于从Cu4Al向Cu3Al的相转变,并且伴随着Cu3Al晶粒的长大。对比实验结果表明,Cu4Al纳米微粉在440 ℃以下具有非常好的热稳定性,超过537 ℃将发生结构相变。  相似文献   

8.
The use is described of absorption spectroscopy for determining phase transitions in the mesogenic compound cholesteryl myristate (CM) and in binary mixtures of terephthalbis-butyl-aniline (TBBA) and cholesteryl myristate. The temperature dependence of the optical densities in the visible region at phase transitions is reported. The transition temperatures obtained with this method are in good agreement with the results obtained with other methods.  相似文献   

9.
The temperature dependence of lattice constants a and c of intermetallic compounds RMn2Ge2 (R=Sm, Gd) is measured in the temperature range 10-800K by using the x-ray diffraction method. The magnetoelastic anomalies of lattice constants are found at the different kinds of spontaneous magnetic transitions. The transversal and longitudinal magnetostrictions of polycrystalline samples are measured in the pulse magnetic field up to 25T. In the external magnetic field there occurs a first-order field-induced antiferromagnetism-ferromagnetism transition in the Mn sublattice, which gives rise to a large magnetostriction. The magnitude of magnetostrictions is as large as 10-3. The transversal and longitudinal magnetostrictions have the same sign and are almost equal. This indicates that the magnetostriction is isotropic and mainly caused by the interlayer Mn-Mn exchange interaction. The experimental results are explained in the framework of a two-sublattice ferrimagnet with the negative exchange interaction in one of the sublattices by taking into account the lattice constant dependence of interlayer Mn-Mn exchange interaction.  相似文献   

10.
11.
M.K.G. Kruse  A. Plastino 《Physica A》2010,389(13):2533-2540
We report on the fact that microscopically enforcing fulfillment of thermodynamics’ third law on a system of fermions automatically yields the values of the external parameter (here coupling strengths in the pertinent Hamiltonian) at which quantum phase transitions take place. Our considerations are illustrated via an exactly solvable model of Plastino and Moszkowski [Il Nuovo Cimento 47, 470 (1978)].  相似文献   

12.
Magnetic phase transitions in rare earth intermetallic compound Nd7Rh3 have been investigated using a single crystal. Measurement results of magnetization, magnetic susceptibility, specific heat, and electrical resistivity reveal that Nd7Rh3 has two magnetic phase transitions at TN=34 K, Tt2=9.1 K and a change of the magnetic feature at Tt1=6.8 K in the absence of an external magnetic field. Antiferromagnetic orderings exist in all the three magnetic states; a large magnetic anisotropy between the c-axis and the c-plane is observed. In the magnetic phase below Tt2, an irreversible field-induced magnetic phase transition takes place in the c-plane; after removing external magnetic field, a coexistence state of ferro- and antiferromagnetic ordering or a ferrimagnetic state having a remanent magnetization MR is stabilized. The MR decays to a certain value for several hours after the first process; a magnetic field cooling effect was also observed in the c-plane below Tt2. In the antiferromagentic state above Tt2, the irreversibility disappears and an ordinary antiferromagnetic state takes place. As the origin of this phenomenon, a kind of martensitic structural transition that is observed in Gd5Ge4 can be considered.  相似文献   

13.
《Physics letters. A》2019,383(26):125834
CuFeO2 was synthetized by a solid-state reaction and its low temperature magnetic properties were investigated using the magnetocaloric effect. Magnetic susceptibility measurements show that there are two magnetic transition temperatures at about 16 and 11 K. Measurement of isothermal magnetization curves for different applied magnetic fields near these temperatures show a reversal in the magnetization trend around 16 K, and Arrott plots indicate they are accompanied by second- and first-order magnetic phase transitions, respectively. Both normal and inverse magnetocaloric effects are observed, and the maximum magnetic entropy change is obtained at 11 K.  相似文献   

14.
We discuss the quantum phase transitions (QPT) in N-spin chains from the point of view of collective observables. We show that the measurement space representation is a convenient tool for the analysis of phase transitions, allowing the determination of an appropriate set of macroscopic order parameters (for a given Hamiltonian). Quantum correlations in the vicinity of the critical points are analyzed both in the ground states and low temperature thermal states.  相似文献   

15.
A modified Yafet-Kittle model is applied to investigate the magnetic properties and magnetic phase transition of the intermetallic compound GdMn_2Ge_2. Theoretical analysis and calculation show that there are five possible magnetic structures in GdMn_2Ge_2. Variations of external magnetic field and temperature give rise to the first-order or second-order magnetic transitions from one phase to another. Based on this model, the magnetic curves of GdMn_2Ge_2 single crystals at different temperatures are calculated and a good agreement with experimental data has obtained. Based on the calculation, the H-T magnetic phase diagrams of GdMn_2Ge_2 are depicted. The Gd-Gd, Gd-Mn, intralayer Mn-Mn and interlayer Mn-Mn exchange coupling parameters are estimated. It is shown that, in order to describe the magnetic properties of GdMn_2Ge_2, the lattice constant and temperature dependence of interlayer Mn-Mn exchange interaction must be taken into account.  相似文献   

16.
Elastic material properties of metamict titanite (sample E2312) during thermally induced stepwise recrystallization are measured using nanoindentation. Changes of the elastic modulus (E) and the hardness (H) are related to increasing long-range order and vanishing amorphous interface areas. Metamict titanite shows H and E values close to titanite glass. H decreases on annealing until ca. 950?K to 9.08?GPa and increases at higher temperatures, while E increases continuously on annealing up to ca. 168.4?GPa at 1220?K. Crystalline titanite from Rauris shows strong anisotropy and H and E values are clearly larger than those of E2312.  相似文献   

17.
The generalized Curie-Weiss model is an extension of the classical Curie-Weiss model in which the quadratic interaction function of the mean spin value is replaced by a more general interaction function. It is shown that the generalized Curie-Weiss model can have a sequence of phase transitions at different critical temperatures. Both first-order and second-order phase transitions can occur, and explicit criteria for the two types are given. Three examples of generalized Curie-Weiss models are worked out in detail, including one example with infinitely many phase transitions. A number of results are derived using large-deviation techniques.  相似文献   

18.
Quantum phase transitions occur at zero temperature when some non‐thermal control‐parameter like pressure or chemical composition is changed. They are driven by quantum rather than thermal fluctuations. In this review we first give a pedagogical introduction to quantum phase transitions and quantum critical behavior emphasizing similarities with and differences to classical thermal phase transitions. We then illustrate the general concepts by discussing a few examples of quantum phase transitions occurring in electronic systems. The ferromagnetic transition of itinerant electrons shows a very rich behavior since the magnetization couples to additional electronic soft modes which generates an effective long‐range interaction between the spin fluctuations. We then consider the influence of rare regions on quantum phase transitions in systems with quenched disorder, taking the antiferromagnetic transitions of itinerant electrons as a primary example. Finally we discuss some aspects of the metal‐insulator transition in the presence of quenched disorder and interactions.  相似文献   

19.
In this paper, we use first-principles calculations to study the correlation between mechanical behaviors and electronic structures of Al-Cu intermetallic compounds. We find that in general, the ductility of intermetallic compounds decreases with the increase in Cu content, while the corresponding work function increases but densities of states decrease. Moreover, homogeneous and symmetrical or small anisotropic charge distributions correspond to small brittleness. The present study therefore suggests that the primary origin of brittleness in intermetallic compounds can be well related to their electronic structures.  相似文献   

20.
In this work, we have investigated the low temperature magnetic phase diagram of the tetragonal NdRhIn5 and Nd2RhIn8 single crystals by means of temperature and field dependent heat capacity and magnetic susceptibility measurements. These compounds order antiferromagnetically with a Néel temperature (TN) of 11 and 10.7 K for NdRhIn5 and Nd2RhIn8, respectively. The constructed magnetic phase of both compounds are anisotropic and show, as expected, a decrease of TN as a function of the magnetic field for c crystallographic direction. However when the magnetic field is applied along of the c-axis, which is the magnetic easy axis, first-order-like field induced transitions are observed within the antiferromagnetic state. We compare the phase diagrams obtained for NdRhIn5 and Nd2RhIn8 with those for their cubic relative NdIn3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号