首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three series of SmCo5.6Ti0.4 samples were prepared by quenching, melt spinning, and ball milling, respectively. Annealing at different temperatures was carried out for the three series. The influence of the processing routes on the structural and magnetic properties was systematically investigated for this alloy. The as-quenched bulk sample consisted of three phases with a rather coarse grain microstructure. Low intrinsic coercivity (iHc) of 0.12 T was obtained in this sample. While the as-spun ribbons and as-milled/annealed powders showed the CaCu5-type phase (1:5) plus Th2Zn17-type phase (2:17), and the 1:5 phase plus TbCu7-type phase (1:7), respectively, with nanograin microstructure. The iHc of as-spun ribbons and as-milled/annealed (700 °C for 2 h) powders was found to be 0.59 and 2.23 T, respectively. Coercivity mechanism of these as-spun ribbons is mainly of nucleation type. In the as-milled/annealed powders, the network of the nanograin boundaries is believed to provide strong pinning sites for the domain wall movement.  相似文献   

2.
The investigation addresses low temperature magnetization behavior in Co36Fe36Si3Al1Nb4B20 alloy ribbons in their as-spun as well as annealed state. Optimum heat treatment at 875 K led to nanocrystallization whereby bcc-(FeCo)SiAl nanoparticles were dispersed in an amorphous matrix as evidenced from transmission electron microscopy. Low temperature magnetization studies were carried out in the range 77-300 K. Using the method of mathematical fittings, magnetization extrapolated to 0 K was obtained. The dependence of the magnetization with respect to temperature of BT3/2 was used to determine the Bloch coefficient “B” and spin wave stiffness constant “D”. Magnetic softening revealed by lowering in the coercivity in the optimum nanostructured state was also the cause of a drop in the stiffness constant. The range of exchange interaction given by D/TC was higher in the nanostructured state compared to the as-spun amorphous state. The effect of nanocrystallization and the resulting ferromagnetic coupling was further evidenced by low temperature magnetization studies.  相似文献   

3.
Magnetoimpedance (MI) in Co68Fe4Zr10Cu2B16 alloy has been investigated in the frequency range 500 kHz–5 MHz and with the application of external steady magnetic field in the longitudinal direction, up to 100 Oe. MI measurements were carried out on as-cast ribbons and also on conventionally annealed and Joule-annealed ribbons. In as cast ribbons, the maximum MI observed is 13% at a frequency of 500 kHz and it decreases to 5% and 4% with conventional annealing at 100 °C and 150 °C, respectively. On the other hand, MI decreases to 8% and 6% with Joule annealing employing currents of 100 mA and 200 mA, respectively. However, Joule annealing with the application of a magnetic field of 5–10 Oe in the transverse direction causes the MI to decrease to 12% and 11% for currents of 100 mA and 200 mA, respectively. In the as-cast ribbons, double peak behavior is observed in all the frequencies whereas, in the annealed ribbons, double peak behavior in general is observed only at high frequencies.  相似文献   

4.
We have investigated the crystallographic, magnetic and thermodynamic properties of the as-cast and annealed Ce2NiSi3 alloys, crystallizing in the AlB2-type hexagonal structure. The DC-magnetic susceptibility data show that the as-cast sample exhibits an antiferromagnetic (AFM) ordering below TN= 3.8 K, whereas the annealed sample shows, at 4.2 K, a magnetic transition of AFM nature and, around 2.5 K, an additional anomaly. The specific heat shows a peak with at 3.8 K for the as cast sample, which shifts to lower temperatures when the magnetic field increases, consistent with the antiferromagnetic nature of the transition. On the other hand, in the annealed alloy, the maximum of the specific heat peak reaches at 4.2 K, and no additional anomalies were observed. The different magnetic behavior between the as-cast and annealed samples is attributed to thermal effects on the structural disorder of nickel and silicon atoms, as already observed in other isotypic R2TSi3 alloys, where R=U or Ce, and T= transition metal.  相似文献   

5.
In boron-substituted melt-spun Sm(Co,Fe,Cu,Zr)7.5-type alloys a nanocomposite microstructure and high coercivities in both as-spun and short-time annealed ribbons can be obtained. In the present study three different compositions, namely Sm(Co0.73Fe0.1Cu0.09Zr0.04B0.04)7.5, Sm(Co0.70Fe0.1Cu0.12Zr0.04B0.04)7.5 and Sm(Co0.70Fe0.1Ni0.12Zr0.04B0.04)7.5 have been examined in order to investigate the influence of composition on the magnetic properties and the microstructure. Melt-spun ribbons have been obtained and annealing has been followed under argon atmosphere for 30–75 min at 600–870 °C. For the as-spun ribbons the TbCu7-type of structure and fcc-Co as a secondary phase have been identified in the X-ray diffraction patterns. For the annealed ribbons above 700 °C the 1:7 phase transforms into 2:17 and 1:5 phases. The TEM studies have shown a homogeneous nanocrystalline microstructure with average grain size of 30–80 nm. Coercivity values of 15–27 kOe have been obtained from hysteresis loops traced in non-saturating fields. The coercivity decreases with temperature, but it is sufficiently large to maintain values higher than 5 kOe at 380 °C.  相似文献   

6.
The effect of post sintering annealing on the dielectric response of (Pb1−xBax)(Yb0.5Ta0.5)O3 ceramics in the diffuse phase transition range (x=0.2) has been investigated. The samples are prepared by conventional solid-state reaction method. The samples are sintered at 1300 °C for 2 h and annealed at different temperatures (800, 900 and 1000 °C) for 8 h and at 800 °C for different time durations (8, 12 and 24 h). A significant change in the dielectric response has been observed in all the samples. The dielectric constant increases remarkably and the dielectric loss tangent decreases. The dielectric peaks of the annealed samples are observed to be more diffused with noticeable frequency dispersion compared to the as sintered sample.  相似文献   

7.
The effectiveness of nanoscale Dy2Fe14B thin films on coercivity and energy product of melt-spun ribbons of Nd2Fe14B at high temperatures was investigated. It is hypothesized that the nanoscale Dy-thin film will act as an obstacle for the nucleation of reverse domains and also maximize the energy of domain walls and thereby improve the magnetic performance at high temperatures. Pulsed laser deposition (PLD) of amorphous Dy2Fe14B layers on Nd2Fe14B melt-spun ribbons was performed for a nominal thickness of 40 nm. The coated ribbons were then annealed in environmentally controlled quartz furnace at two different cycles (750 °C for 15 min and 900 °C for 2 h) to cause crystallization. Magnetic hysteresis tests conducted at 300 and 400 K revealed that there is small but consistent improvement in the magnetic properties of the coated ribbons annealed at 750 °C for 15 min. However, higher temperature annealing (900 °C for 2 h) drastically reduced the magnetic properties. The incomplete recrystallization of amorphous structure at 750 °C for 15 min and large grain growth and formation of non-magnetic phases at 900 °C for 2 h are believed to be responsible for not meeting the expected magnetic performance.  相似文献   

8.
Structural and magnetic properties of two rapidly solidified and post-annealed Fe60Pt15B25 and Fe60Pt25B15 alloys are compared. The as-quenched Fe60Pt15B25 ribbon was fully amorphous whereas in the Fe60Pt25B15 alloy the amorphous phase coexists with an fcc FePt disordered solid solution. Differential scanning calorimetry curves of both alloys reveal a single exothermal peak with onset temperatures of 873 and 847 K for Fe60Pt15B25 and Fe60Pt25B15, respectively. Magnetically hard, tetragonal ordered L10 FePt and magnetically soft Fe2B nanocrystalline phases were formed due to the annealing of the alloys, as indicated by X-ray diffraction and Mössbauer spectroscopy measurements. Two-phase behavior was detected in the temperature dependence of magnetization of the annealed samples. A magnetic hardening was observed for all annealed ribbons. Magnetic properties of the annealed alloys, studied by hysteresis loop measurements, were related to the differences in the relative fractions of the hard and soft magnetic phases calculated from Mössbauer spectra. The alloy with 25 at% Pt exhibits better hard magnetic properties (Hc=437 kA/m, Mr/Ms=0.74) than the alloy with smaller Pt content (Hc=270 kA/m, Mr/Ms=0.73) mainly due to the larger abundance of the ordered tetragonal FePt phase.  相似文献   

9.
The crystal structure and magnetocaloric effect (MCE) of water-quenched and annealed (Mn0.5Co0.5)65Ge35 alloys were studied in this paper. A CoMnGe-single phase was formed in the water-quenched alloy, and mixture phases of CoMnGe and Mn+2O in the annealed alloy. The annealed alloy has a smaller crystal parameter than the water-quenched alloy. The Curie temperature is 275 and 298 K for the water-quenched and annealed alloys, respectively, which means that the magnetic-transition temperature in this material can be controlled by anneal. In addition, the same magnetic entropy change was found in these two alloys, even though their Curie temperatures have a significant difference.  相似文献   

10.
BaTiO3+MgFe2O4 material system was synthesized by hybrid chemical process using chlorides and nitrates of barium, titanium, iron, and magnesium. Magnetic properties of the composite samples measured as a function of annealing conditions indicated soft magnetic behavior. Saturation specific magnetization from 8 21 emu/g was observed for samples annealed at temperature between 950 and 1150 °C. Variation of specific saturation magnetization with respect to annealing temperature was related with the distribution of Fe cations in the tetrahedral and octahedral sites of MgFe2O4. Electrical properties of the samples annealed at different temperatures were measured to analyze the coexistence of ferroelectric phase. Dielectric constant varying from 15 to 200 with respect to frequency was observed for samples annealed from 950 to 1150 °C.  相似文献   

11.
BaAl2O4:Eu2+,Nd3+,Gd3+ phosphors were prepared by a combustion method at different initiating temperatures (400–1200 °C), using urea as a comburent. The powders were annealed at different temperatures in the range of 400–1100 °C for 3 h. X-ray diffraction data show that the crystallinity of the BaAl2O4 structure greatly improved with increasing annealing temperature. Blue-green photoluminescence, with persistent/long afterglow, was observed at 498 nm. This emission was attributed to the 4f65d1–4f7 transitions of Eu2+ ions. The phosphorescence decay curves were obtained by irradiating the samples with a 365 nm UV light. The glow curves of the as-prepared and the annealed samples were investigated in this study. The thermoluminescent (TL) glow peaks of the samples prepared at 600 °C and 1200 °C were both stable at ∼72 °C suggesting that the traps responsible for the bands were fixed at this position irrespective of annealing temperature. These bands are at a similar position, which suggests that the traps responsible for these bands are similar. The rate of decay of the sample annealed at 600 °C was faster than that of the sample prepared at 1200 °C.  相似文献   

12.
The phase relation of LaFe11.5Si1.5 alloys annealed at different high-temperature from 1223 K (5 h) to 1673 K (0.5 h) has been studied. The powder X-ray diffraction (XRD) patterns show that large amount of 1:13 phase begins to form in the matrix alloy consisting of α-Fe and LaFeSi phases when the annealing temperature is 1423 K. In the temperature range from 1423  to 1523 K, α-Fe and LaFeSi phases rapidly decrease to form 1:13 phase, and LaFeSi phase is rarely observed in the XRD pattern of LaFe11.5Si1.5 alloy annealed at 1523 K. With annealing temperature increasing from 1573  to 1673 K, the LaFeSi phase is detected again in the LaFe11.5Si1.5 alloy, and there is La5Si3 phase when the annealing temperature reaches 1673 K. There almost is no change in the XRD patterns of LaFe11.5Si1.5 alloys annealed at 1523 K for 3-5 h. According to this result, the La0.8Ce0.2Fe11.5−xCoxSi1.5 (0≤×≤0.7) alloys are annealed at 1523 K (3 h). The analysis of XRD patterns shows that La0.8Ce0.2Fe11.5xCoxSi1.5 alloys consist of the NaZn13-type main phase and α-Fe impurity phase. With the increase of Co content from x=0 to 0.7, the Curie temperature TC increases from 180 to 266 K. Because the increase of Co content can weaken the itinerant electron metamagnetic transition, the order of the magnetic transition at TC changes from first to second-order between x=0.3 and 0.5. Although the magnetic entropy change decreases from 34.9 to 6.8 J/kg K with increasing Co concentration at a low magnetic field of 0-2 T, the thermal and magnetic hysteresis loss reduces remarkably, which is very important for the magnetic refrigerant near room temperature.  相似文献   

13.
Phase transition from anatase to rutile for the 70 nm TiO2 crystallite has been investigated by the time differential perturbed angular correlation (TDPAC) technique. The study involved the annealing of the TiO2 nanocrystals, adsorbed with the nuclear probe (181Hf/181Ta) at trace level, at different temperatures for different durations. The TDPAC measurement was also supported by XRD measurement where the width of the peaks increases with the increase in annealing temperature indicating a crystal growth. The samples annealed up to 823 K for 4 h showed no phase transition, except for the growth of the crystallites. However, it showed phase transition at the same temperature (823 K), when annealed for longer duration, indicating the slower kinetics of the phase transition process. Further the sample, when annealed at 1123 K for 4 h, showed phase transition. It has also been observed that the 181Hf tracer, adsorbed on 70 nm anatase TiO2, diffuses from surface to bulk during the phase transition process and the extent of diffusion in anatase differs from that in rutile phase. However, surface to bulk mass-transfer is found to play a significant role in the phase transition process.  相似文献   

14.
The optical absorption of the As-prepared and annealed As45.2Te46.6In8.2 thin films are studied. Films annealed at temperatures higher than 453 K show a decrease in the optical energy gap (Eo). The value of Eo increases from 1.9 to 2.43 eV with increasing thickness of the As-prepared films from 60 to 140 nm. The effect of thickness on high frequency dielectric constant (?) and carrier concentration (N) is also studied. The crystalline structures of the As45.2Te46.6In8.2 thin films resulting from heat treatment of the As-prepared film at different elevated temperatures is studied by X-ray diffraction. An amorphous-crystalline transformation is observed after annealing at temperatures higher than 453 K. The electrical conductivity at low temperatures is found due to the electrons transport by hopping among the localized states near the Fermi level. With annealing the films at temperatures higher than 473 K (the crystallization onset temperature) for 1 h, the electrical conductivity increases and the activation energy decreases, which can be attributed to the amorphous-crystalline transformations.  相似文献   

15.
We have investigated the structural and electrical transport properties of Nb-doped TiO2 films deposited on (1 0 0) LaAlO3 substrates by rf magnetron sputtering at temperatures ranging from 873 K to 1073 K. Films deposited below 998 K are anatase, and mixed phases between anatase and rutile exist in the film grown at higher temperatures. We find that films deposited at low temperatures exhibit semiconductor behavior, while metallic conductivity is observed in the most conducting film deposited at 998 K. For this sample, compared to electron-phonon scattering mechanism, electron-phonon-impurity interference effect plays an important role in its electron transport process. Moreover, the temperature coefficient of the resistivity for the film deposited at 1073 K is negative from 2 K to 300 K. The temperature dependence of resistivity for the film is described by ∼exp(b/T)1/2 at temperatures from 80 K down to 30 K, and by the fluctuation induced tunneling model from 80 K to 300 K.  相似文献   

16.
Melt-spun ribbons of Co69Fe7Si14B10 alloy have been prepared at different wheel speeds viz. 47, 34 and 17 m/s and investigated for structural and magnetic properties. Degree of amorphicity in the as-spun ribbons is found to increase with wheel speed. Amorphous phase crystallizes in two stages producing Co2Si, Co2B and CoSi phases on annealing. Increase in wheel speed improves soft magnetic and magnetoimpedance properties due to decrease in perpendicular anisotropy which is associated with stripe domain formation. On annealing soft magnetic properties and magnetoimpedance deteriorate due to the formation of crystalline phases.  相似文献   

17.
Differential scanning calorimetry, X-ray diffraction and room temperature Mössbauer spectrum measurements of Fe73.5Cu1Nb3Si13.5B9 (Finemet) alloy have been carried out in order to study its structural and magnetic properties as a function of annealing temperature. The DSC profile of as-quenched Finemet showed two exothermic peaks at 530 and 702 °C, corresponding to two crystallization processes. The Finemet alloy remains amorphous at 450 °C with one broad peak in XRD pattern and one broad sextet in Mössbauer spectrum. When the Finemet alloy was annealed at 550 °C, only well indexed body-center-cubic phase was detected. After being annealed at 650 and 750 °C, the XRD patterns showed the coexistence of α-Fe(Si) and Fe-B intermetallic phases with the increase in XRD peak intensities, indicating the growth of crystallites and the decomposition of Fe73.5Cu1Nb3Si13.5B9 alloy at elevated temperatures. The Mössbauer spectra of annealed Finemet alloy could be fitted with 4 or 5 sextets and one doublet at higher annealing temperatures, revealing the appearance of different crystalline phases corresponding to the different Fe sites above the crystallization temperature. The appearance of the nanocrystalline phases at different annealing temperatures was further confirmed by the recoilless fraction measurements.  相似文献   

18.
Nanoparticles of Zn substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4) have been prepared by a sol-gel method where the ultra-sonication technique has been adopted to reduce the agglomeration effect among the nanoparticles. The samples were heat-treated at three different temperatures and the formation of the nanocrystalline phase was confirmed by X-ray diffractograms (XRD). The average particle size of each sample has been estimated from the (311) peak of the XRD pattern using the Debye-Scherrer formula and the average sizes are in the range of 10-21 nm. The average particle size, crystallographic phase, etc. of some selected samples obtained from the high-resolution transmission electron microscopy are in agreement with those estimated from the XRD patterns. Static magnetic measurements viz., hysteresis loops, field cooled and zero field cooled magnetization versus temperature curves of some samples carried out by SQUID in the temperature range of 300 to 5 K clearly indicate the presence of superparamagnetic (SPM) relaxation of the nanoparticles in the samples. The maximum magnetization of the SPM sample annealed at 500 °C is quite high (68 Am2/Kg) and the hysteresis loops are almost square shaped with very low value of coercive field at room temperature (827.8 A/m). The particle size, magneto-crystalline anisotropy, etc. have been estimated from the detailed theoretical analysis of the static magnetic data. The dynamic magnetic behavior of the samples was also investigated by observing the ac hysteresis loops and magnetization versus field curves with different time windows at room temperatures. The different soft magnetic quantities viz., coercive field, magnetization, remanance, hysteresis losses, etc. were extracted from dynamic measurements. Dynamic measurements confirmed that the samples are in their mixed state of SPM and ordered ferrimagnetic particles, which is in good agreement with the results of static magnetic measurements. Mössbauer spectra of the samples recorded at room temperature (300 K) and at different temperatures down to 20 K confirmed the presence of the SPM relaxation of the nanoparticles of the samples.  相似文献   

19.
The effect of Ti and C additions on the corrosion behavior of Nd9.4Pr0.6Febal.Co6B6Ga0.5TixCx (x=0, 1.5, 3, 6) isotropic nanocomposite melt-spun ribbons in 3.5 wt% sodium chloride solution was studied. The melt-spun ribbons were annealed at 750 °C for 10 min in argon-filled quartz capsules. The microstructure of multiphase nanocrystalline samples and corrosion products was characterized using the X-ray diffraction and electron microscopy techniques. The electrochemical behavior was assessed using potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the addition of Ti and C increases the corrosion resistance of NdFeB ribbons; the best corrosion resistance was obtained for 1.5 wt% Ti and C content.  相似文献   

20.
Effect of annealing on the soft magnetic properties of Fe73.5Si13.5B9Nb3Au1 amorphous ribbon has been investigated by means of structure examination, magnetoimpedance ratio (MIR) and incremental permeability ratio (PR) spectra measured in the frequency range of 1–10 MHz at a fixed current of 10 mA X-ray diffraction analysis showed that the as-cast sample was amorphous and it became nanocrystalline under a proper heat treatment. When annealing amorphous alloy at 530 °C for 30, 60, 90 min, soft magnetic properties have been improved drastically. Among the samples investigated, the sample annealed at 530 °C for 90 min showed the softest magnetic behavior. The MIR and PR curves revealed the desirable changes in anisotropy field depending upon annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号