首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
利用脉冲激光沉积装置在钼筒上沉积镧氧膜,通过俄歇能谱仪确定其表面成分并进行定量分析,结合扫描电镜对薄膜进行形貌观察和能谱分析。实验结果表明,本方法制备的薄膜污染小,表面不同区域成分均匀分布,发射性能测量后薄膜均一性保持良好。综合实验证明激光沉积能够制备均一性良好的镧氧薄膜。  相似文献   

2.
利用脉冲激光沉积装置在钼筒上沉积镧氧膜,通过俄歇能谱仪确定其表面成分并进行定量分析,结合离子刻蚀对薄膜进行剖面分析,实验结果表明,除去薄膜表面少许C,O吸附外,本制备方法污染小,定量分析证明薄膜为富镧的镧氧薄膜。  相似文献   

3.
报道了利用多腔耦合微波表面波等离子体增强化学气相沉积(PECVD)的方法制备类金刚石(DLC)薄膜。通过发射光谱(OES)测量,对Ar等离子体中的各种放电参数以及全部四个腔室内放电的均匀性作出评估。采用表面轮廓仪测量了薄膜的厚度;薄膜的表面形貌、组成结构通过原子力显微镜(AFM)、激光拉曼光谱和X射线衍射光谱(XPS)进行了表征。在12.5μm厚度的有机薄膜聚酯(PET)表面沉积一定厚度DLC后,通过测量水蒸气透过率(WVTR)对DLC薄膜的阻隔性能进行了研究。结果表明,这种多腔耦合微波表面波等离子体装置,不仅能够实现四个腔室同时相对均匀的放电,也能够实现单个腔室的轴向均匀放电。制备的DLC薄膜结构致密、成分均匀,可以使PET薄膜阻隔性能提高约20倍。  相似文献   

4.
报道了利用多腔耦合微波表面波等离子体增强化学气相沉积(PECVD)的方法制备类金刚石(DLC)薄膜。通过发射光谱(OES)测量,对Ar等离子体中的各种放电参数以及全部四个腔室内放电的均匀性作出评估。采用表面轮廓仪测量了薄膜的厚度;薄膜的表面形貌、组成结构通过原子力显微镜(AFM)、激光拉曼光谱和X射线衍射光谱(XPS)进行了表征。在12.5μm厚度的有机薄膜聚酯(PET)表面沉积一定厚度DLC后,通过测量水蒸气透过率(WVTR)对DLC薄膜的阻隔性能进行了研究。结果表明,这种多腔耦合微波表面波等离子体装置,不仅能够实现四个腔室同时相对均匀的放电,也能够实现单个腔室的轴向均匀放电。制备的DLC薄膜结构致密、成分均匀,可以使PET薄膜阻隔性能提高约20倍。  相似文献   

5.
运用二次离子质谱研究了甚高频等离子体增强化学气相沉积制备的不同硅烷浓度和功率条件下薄膜中的氧污染情况.结果发现:薄膜中的氧含量随硅烷浓度和功率的变化而改变.制备的微晶硅薄膜,晶化程度越高薄膜中的氧含量相对越多.另外,不同本底真空中的氧污染实验结果表明:微晶硅材料中的氧含量与本底真空有很大的关系,因此要制备高质量的微晶硅材料,高的本底真空是必要条件. 关键词: 甚高频等离子体增强化学气相沉积 二次离子质谱 氧污染  相似文献   

6.
通过原子层沉积技术在熔石英玻璃表面制备了同质材料的单层SiO2薄膜,对光学薄膜的物理化学性质和强激光辐照下的激光诱导损伤性能进行了深入研究。实验中采用双叔丁基氨基硅烷(BTBAS)和臭氧(O3)作为反应前驱体,在熔石英光学元件表面进行了SiO2薄膜的原子层沉积工艺研究,以不同沉积温度条件制备了一系列膜样品。首先对原子层沉积特性和薄膜均匀性展开了研究,发现薄膜生长厚度与沉积循环次数之间符合线性生长规律,验证了制备薄膜的原子级逐层生长特性,并且表面沉积膜层的均匀性很好,其测得膜厚波动不超过2%。然后针对不同温度条件下沉积的SiO2薄膜,对其粗糙度及各类光谱特性展开了研究,对比结果表明:样品的表面粗糙度在镀膜后有轻微的降低;薄膜样品在200~1 000 nm范围内具有出色的透过率,均超过90%并逐渐趋近于93.3%,且其透射光谱与在裸露熔石英衬底上测得的光谱没有明显差异;镀膜前后荧光光谱和傅里叶变换红外光谱的差异证实了原子层沉积SiO2膜中点缺陷(非桥键氧、氧空位、羟基等)的存在,这将会影响薄膜耐损伤性能。最后对衬底和膜样品进行了紫外激光诱导损伤测试,损伤阈值的变化表明熔石英元件表面沉积薄膜后的激光损伤性能有所降低,其零概率损伤阈值从31.8 J·cm-2减小到20 J·cm-2左右,与光谱缺陷情况表征相符合。薄膜中点缺陷部位会吸收紫外激光能量,导致局域温度升高,进而出现激光诱导损伤现象并降低抗激光损伤阈值。在选定的沉积温度范围内,较高温度条件下沉积的SiO2薄膜其激光诱导损伤性能更好,可以控制沉积温度条件使得元件的抗损伤性能更为接近衬底本身,后续有望通过其他反应参数的优化来获得薄膜抗损伤性能的进一步提升。  相似文献   

7.
 简要介绍了微波等离子体化学气相沉积(MPCVD)方法在硅基底上制备纳米金刚石薄膜的过程,并对制备的薄膜进行了表面分析。在此基础上设计出了用来测定反射型二次电子发射系数的实验装置,得出了几种薄膜在不同入射能量下的发射系数,取得了二次发射系数为15的满意结果,表明纳米金刚石薄膜作为二次电子发射材料具有很好的应用前景。  相似文献   

8.
阎鹏勋  杨思泽 《物理》2002,31(8):510-516
脉冲高能量密度等离子体是一项全新的等离子体材料表面处理和薄膜制备技术。文章主要介绍了作者近几年来在这方面的研究成果。从理论和试验上研究了脉冲高能量密度等离子体的产生机制及其物理性质,研究了脉冲等离子体与材料相互作用的基本物理现象和物理机制,诊断测量表明,脉冲等离子体具有电子温度高(10-100eV)、等离子体密度高(10^14-10^16cm^-3)、定向速度高(-10^7cm/s)、功率大(10^4W/cm^2)等特点,在制备薄膜时具有沉积速率高,薄膜与基底粘结力强,并兼有激光表面处理、电子束处理、冲击波轰击、离子注入、溅射、化学气相沉积等综合性特点,可以在室温下合成亚稳态相和其他化合物材料。在此基础上,系统地进行了脉冲等离子体薄膜制备和材料表面改性及其机理的研究,在室温下的不同材料衬底上成功的沉积了性能良好的较大颗粒立方氮化硼、碳氮化钛、氮化钛、类金刚石、氮化铝等薄膜材料,沉积薄膜和基底之间存在一个很宽的过渡层,因此导致薄膜与基底有很强的粘结力,经脉冲等离子体处理过的金属材料表面性能得到了极大改善。  相似文献   

9.
大气压等离子体因具有很多独特优势从而在材料制备和表面工艺领域备受关注.本文利用大气压针-板电晕放电等离子体射流制备氧化钛(TiO_2)薄膜,研究了电晕极性和放电参数对薄膜特性的影响.实验测试了正负电晕等离子体射流的电学性能、发展过程和发射光谱,并对不同条件下制备的TiO_2薄膜进行了表征和分析.结果表明:负电晕等离子体射流制备的TiO_2薄膜表面更均匀而且薄膜中钛(Ti)含量更高.正负电晕等离子体射流制备的薄膜的结合力均优于4.7 N/cm,表面电阻低于10~(10) Ω.此外,发现TiO_2薄膜在基底表面沉积和在气相中成核存在竞争机制,并进一步阐述了电晕放电等离子体制备薄膜的成膜机理和不同极性放电的差异.本文结果将为大气压等离子体制备均匀、致密的功能氧化物薄膜材料提供有益参考.  相似文献   

10.
李勇  李惠琪  夏洋  刘邦武 《物理学报》2013,62(19):198102-198102
采用原子层沉积方法在碳黑纳米颗粒表面分别沉积Al2O3, ZnO, TiO2和Pt, 成功制备出核-壳型纳米材料. 通过高分辨率透射电子显微镜、X射线光电子能谱仪、 能谱仪对材料的表面形貌、晶体结构、薄膜成分进行了表征和分析. 结果表明, 原子层沉积方法是制备核壳型纳米材料的理想方法. 此外, 还分析了采用原子层沉积方法沉积不同材料, 所生长的薄膜材料有单晶、多晶、非晶等多种存在形式的形成原因. 关键词: 原子层沉积 核-壳型纳米材料 碳黑纳米颗粒  相似文献   

11.
Behavior of oxygen in sputtering deposited ZnO films through thermal annealing and its effect on sheet resistance of the films were investigated. The crystallinities of the ZnO film were improved by post-deposition annealing in vacuum. However, the sheet resistance of ZnO film was dramatically decreased after post-deposition annealing in vacuum at more than 300 °C, while O2 desorbed from the film. The oxygen vacancies which acted as donors were formed by the thermal annealing in vacuum. The sheet resistance of the films was recovered by annealing in oxygen ambient. In this paper, 18O2 gas as an oxygen isotope was used as the annealing ambient in order to distinguish from 16O, which was constituent atom of the ZnO films. SIMS analysis revealed that 18O diffused into the ZnO film from the top surface by 18O2 annealing. Therefore oxygen vacancies formed by the post-deposition annealing in vacuum could be compensated by the annealing in oxygen ambient.  相似文献   

12.
高脉冲功率能量PLD法制备MgZnO薄膜中的沉积机理   总被引:5,自引:4,他引:1       下载免费PDF全文
用PLD法成功制备了一系列高质量的MgZnO薄膜。实验中发现高脉冲能量沉积薄膜的结构和发光特性随基片温度的变化规律与低脉冲能量下的结果不一样:基片在室温时高脉冲能量制备薄膜的XRD峰的半峰全宽比高基片温度时的结果相对更小;AFM显示其颗粒变大,柱状生长突出;PL谱紫峰与绿峰强度比最大,结晶质量反而提高。另一方面,与低脉冲能量时相反,增大氧气压强后高脉冲能量沉积的薄膜XRD半峰全宽变窄。结合实验现象和表征,合理解释了高脉冲能量沉积的机理。室温制备高质量MgZnO薄膜的PLD沉积机理对于以后在柔性衬底上沉积薄膜的研究有重要的参考价值。  相似文献   

13.
ZnO:Al (ZAO) film has a potential application in providing spacecrafts the protection against atomic oxygen (AO) erosion. To advance the understanding of the AO resisting mechanisms and the relationships between the structures, morphologies and conductive properties of ZAO film, direct current magnetron sputtered ZAO films with different thicknesses were treated with AO in a ground-based simulation facility. The microstructure, surface chemical state, morphologies and electrical properties of pristine films and irradiated ones were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and Hall measurement. It is found that AO exposure produces novel, oriented recrystallization of the surface particles. It also increases the content of oxygen ions in fully oxidized stoichiometric surroundings on the surface, resulting in the decrease of the conductivity. As the thickness of ZAO film increases, the crystallinity, conductivity and resistance to AO erosion are all improved.  相似文献   

14.
Nanocrystalline ZnO thin films were chemically deposited on glass substrates using two different precursors namely, zinc sulphate and zinc nitrate. XRD studies confirm that the films are polycrystalline zinc oxide having hexagonal wurtzite structure with crystallite size in the range 25-33 nm. The surface morphology of film prepared using zinc sulphate exhibits agglomeration of small grains throughout the surface with no visible holes or faulty zones, while the film prepared using zinc nitrate shows a porous structure consisting of grains with different sizes separated by empty spaces. The film prepared using zinc sulphate shows higher reflectance due to its larger refractive index which is related to the packing density of grains in the film. Further, the film prepared using zinc sulphate is found to have normal dispersion for the wavelength range 550-750 nm, whereas the film prepared using zinc nitrate has normal dispersion for the wavelength range 450-750 nm. The direct optical band gaps in the two films are estimated to be 3.01 eV and 3.00 eV, respectively. The change in film resistance with temperature has been explained on the basis of two competing processes, viz. thermal excitation of electrons and atmospheric oxygen adsorption, occurring simultaneously. The activation energies of the films in two different regions indicate the presence of two energy levels - one deep and one shallow near the bottom of the conduction band in the bandgap.  相似文献   

15.
Cu/ZnO/n+-Si structures were prepared by magnetron sputtering of a layer of ZnO thin film onto heavily doped silicon substrate, followed by thermal evaporation of a thin layer of metallic Cu. The resistive switching characteristics of Cu/ZnO/n+-Si structures were investigated as a function of oxygen partial pressure during ZnO deposition. Reproducible resistive switching characteristics were observed in ZnO thin films deposited at 20%, 33% and 50% oxygen partial pressure ratios while ZnO thin film deposited at 10% oxygen partial pressure ratio did not show resistive switching behavior. The conduction mechanisms in high and low resistance states are dominated by space-charge-limited conduction and ohmic behavior respectively, which suggests that resistive switching behaviors in such structures are related to filament formation and rupture. It is also found that the reset current decreases as oxygen partial pressure increases, due to the variation of oxygen vacancy concentration in the ZnO thin films.  相似文献   

16.
To correlate flat titanium film surface properties with deposition parameters, titanium flat thin films were systematically deposited on glass substrates with various thicknesses and evaporation rates by electron-beam evaporation. The chemical compositions, crystal structure, surface topographies as well as wettability were investigated by using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM) and water contact angle measurement, respectively. The films consisted mainly of TiO2. Small percentages of Ti2O3 and metallic Ti were also found at the film surface using high-resolution XPS analysis. Quantitative XPS showed little differences regarding elemental compositions among different groups of films. The films were obtained by varying the deposition rate and the film thickness, respectively. XRD data showed consistent reflection patterns of the different titanium samples deposited using different film thicknesses. Without exception measurements of all samples exhibited contact angles of 80° ± 5°. Quantitative AFM characterization demonstrated good correlation tendency between surface roughness and film thickness or evaporation rate, respectively. It is important to notice that titanium films with different sizes of grains on their surfaces but having the same chemistry and film bulk structure can be obtained in a controllable way. By increasing the film thickness and evaporation rate, the surface roughness increased. The surface morphology and grain size growth displayed a corresponding trend. Therefore, the control of these parameters allows us to prepare titanium films with desired surface properties in a controllable and reproducible way for further biological investigations of these materials.  相似文献   

17.
Amorphous and polycrystalline zirconium oxide thin films have been deposited by reactive rf magnetron sputtering in a mixed argon/oxygen or pure oxygen atmosphere with no intentional heating of the substrate. The films were characterized by high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and capacitance versus voltage (C-V) measurements to investigate the variation of structure, surface morphology, thickness of SiO2-like interfacial layer as well as dielectric characteristics with different oxygen partial pressures. The films deposited at low oxygen partial pressures (less than 15%) are amorphous and dense with a smooth surface. In contrast, the films prepared at an oxygen partial pressure higher than 73% are crystallized with the microstructure changing from the mixture of monoclinic and tetragonal phases to a single monoclinic structure. The film structural transition is believed to be consequences of decrease in the oxygen vacancy concentration in the film and of increase of the energetically neutral particles in the plasma due to an increased oxygen partial pressure. SE measurements showed that significant interfacial SiO2 growth has taken place above approximately 51%. The best C-V results in terms of relative dielectric constant values are obtained for thin films prepared at an oxygen partial pressure of 15%.  相似文献   

18.
This work discusses the influence of changes to ultrasound (US) parameters over the nickel cobalt (Ni-Co) metal thin film properties produced by supercritical CO2 (SC-CO2) electroplating. Additionally, Ni-Co films were produced by conventional electroplating and silent SC-CO2 and compared against each other.The discussion on metal thin film properties revolves around variations to the bath type ultrasonic power (15 W and 20 W) and frequency (42 k Hz and 72 kHz) during experiments. The properties provided by the three electroplating processes and analyzed include: grain sizes, film elemental content analyses, surface microstructures, film hardness, corrosion resistance, surface roughness, crystalline structure and preferential growth, etc. From the results it was clear that quality of films produced by US-SC-CO2 was improved compared to that of films produced by silent SC-CO2, which itself was better than those produced by conventional electroplating. However, when US power was varied we observed a decline in the mechanical properties of the produced films.The combination of ultrasonic agitation with SC-CO2 allows for improved mechanical properties such as: lower surface roughness, finer grain size and surface morphologies, increased corrosion resistance and film hardness. The ultrasound agitation applied to SC-CO2 electroplating enhanced the formation of alloyed metal as ultrasonic agitation increased the electrolyte flowability during electroplating process resulting in increased mass transfer while at the same time achieving a surface cleaning effect which removed metal ions with poor adhesion and other unwanted particles. Moreover, application of ultrasonic agitation avoids the use of surfactants so only changes to the physical phenomena and no changes to the chemical composition of the deposited thin films were observed, meaning less pollution to the electrolyte and higher purity of the deposited films.The US-SC-CO2 electroplating method described in this work effectively enhanced the mechanical properties of the deposited thin films compared to those produced by both silent SC-CO2 and conventional electroplating processes.  相似文献   

19.
Thin films of silicon nanoparticles (diameter 5-10 nm) were deposited on highly oriented pyrolytic graphite (HOPG) by low-pressure DC magnetron sputtering. The effect of different room-temperature oxidation techniques was investigated using XPS sputter-depth profiling. Both oxygen treatment during deposition (using an argon-oxygen mixture in the sputter gas) as well as post-deposition oxidation techniques (exposure to oxygen plasma beam, ambient air conditions) were studied. In all cases oxidation was found to involve the whole film down to the film/substrate interface, indicating a network of open pores. Depending on the type of oxidation between 15 and 25 at% of oxygen, mostly associated with low oxidation states of silicon, were detected in the interior of the film and attributed to oxidized surfaces of the individual silicon nanoparticles. The highest oxygen concentrations were found at the very film surface, reaching levels of 25-30% for films exposed to air or prepared by reactive magnetron sputtering. For the oxygen plasma-treated films even oxygen surface concentrations around 45% and fully oxidized silicon (i.e., SiO2) were achieved. At the Si/HOPG interface formation of silicon carbide was observed due to intermixing induced by Ar-ion beam used for sputter-depth profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号