首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mass spectra of new substituted pyrrolidino[60]- and [70]fullerenes have been obtained using electrospray ionization conditions in the positive and negative mode of detection with two different mass spectrometers, a quadrupole ion trap and a Fourier transform ion cyclotron resonance. Radical anions M(●-) and deprotonated molecules [M-H](-) are formed under negative electrospray ionization mass spectrometry conditions, and the collision-induced dissociations of both ionic species have been studied. Either negative odd-electron ions or negative even-electron ions undergo a retro-cycloaddition process forming the corresponding fullerene product ions C(60)(●-) and C(70)(●-). The generation of fullerene radical anions from deprotonated molecules is a new exception of the "even-electron rule." In contrast, the protonated molecules [M + H](+) obtained from the positive mode of detection do not undergo this cycloreversion reaction, and the MS(n) experiment reveals a variety of eliminations of neutral molecules involving different hydrogen shifts and multiple bond cleavages that lead eventually to substituted methanofullerene fragment ions. The observed fragmentations can be correlated with the electronic character of the substituents attached to the heterocyclic moiety. The results obtained from the thermal reactions of these compounds, carried out under different pH conditions, correlate well with those obtained in gas phase. The different behaviors between protonated and unprotonated molecules and ions can be explained assuming that the retro-cycloaddition reaction takes place only when the nitrogen atom of the pyrrolidine ring (the basic center of the molecule) is unprotonated both in gas and condensed phase. The protonation of the NH group inhibits the cycloreversion process, and therefore different fragmentations take place. The detailed mechanisms of the formation and evolution of the intermediate fragments are described.  相似文献   

2.
Effect of phenylalanine on the fragmentation of deprotonated peptides   总被引:1,自引:0,他引:1  
The fragmentation reactions of a variety of deprotonated dipeptides and tripeptides containing phenylalanine have been studied using energy-resolved collision-induced dissociation, isotopic labeling and MS/MS/MS experiments. The benzyl a-group has a substantial effect on the fragmentation reactions observed. When the phenylalanine is in the C-terminal position of dipeptides or tripeptides a major fragmentation reaction is elimination of neutral cinnamic acid to from a deprotonated amino acid amide (c1 ion) for dipeptides and a deprotonated dipeptide amide (c2 ion) for tripeptides. Fragmentation of the [M - H]- ions of tripeptides with phenylalanine in the central position also results in substantial formation of the deprotonated amide of the N-terminal amino acid residue. When the phenylalanine residue is in the N-terminal position elimination of C7H8 from the [M - H - CO2]- ion and formation of the benzyl anion become important fragmentation pathways. Sequence ions frequently observed are the y1 ions, "b2 ions and a3-Nt ions.  相似文献   

3.
This study has elucidated the fragmentation pathway for deprotonated isoflavones in electrospray ionization using MS(n) ion trap mass spectrometry and triple quadrupole mass spectrometry. Genistein-d(4) and daidzein-d(3) were used as references for the clarification of fragment structures. To confirm the relationship between precursor and product ions, some fragments were traced from MS(2) to MS(5). The previous literature for the structurally related flavones and flavanones located the loss of ketene (C(2)H(2)O) to ring C, whereas the present fragmentation study for isoflavones has shown that the loss of ketene occurs at ring A. In the further fragmentation of the [M-H-CH(3)](-*) radical anion of methoxylated isoflavones, loss of a hydrogen atom was commonly found. [M-H-CH(3)-CO-B-ring](-) is a characteristic fragment ion of glycitein and can be used to differentiate glycitein from its isomers. Neutral losses of CO and CO(2) were prominent in the fragmentation of deprotonated anions in ion trap mass spectrometry, whereas recyclization cleavage accounted for a very small proportion. In comparison with triple quadrupole mass spectrometry, ion trap MS(n) mass spectrometry has the advantage of better elucidation of the relationship between precursor and product ions.  相似文献   

4.
A variety of peptide sulfinyl radical (RSO?) ions with a well-defined radical site at the cysteine side chain were formed at atmospheric pressure (AP), sampled into a mass spectrometer, and investigated via collision-induced dissociation (CID). The radical ion formation was based on AP reactions between oxidative radicals and peptide ions containing single inter-chain disulfide bond or free thiol group generated from nanoelectrospray ionization (nanoESI). The radical induced reactions allowed large flexibility in forming peptide radical ions independent of ion polarity (protonated or deprotonated) or charge state (singly or multiply charged). More than 20 peptide sulfinyl radical ions in either positive or negative ion mode were subjected to low energy collisional activation on a triple-quadrupole/linear ion trap mass spectrometer. The competition between radical- and charge-directed fragmentation pathways was largely affected by the presence of mobile protons. For peptide sulfinyl radical ions with reduced proton mobility (i.e., singly protonated, containing basic amino acid residues), loss of 62?Da (CH2SO), a radical-initiated dissociation channel, was dominant. For systems with mobile protons, this channel was suppressed, while charge-directed amide bond cleavages were preferred. The polarity of charge was found to significantly alter the radical-initiated dissociation channels, which might be related to the difference in stability of the product ions in different ion charge polarities.  相似文献   

5.
Active phloroglucinol constituents of Hypericum perforatum (St. John's wort) extracts, hyperforin and adhyperforin, have been studied following ion activation using tandem mass spectrometry (MS/MS) and complemented by accurate mass measurements. These two compounds were readily analyzed as protonated and deprotonated molecules with electrospray ionization. MS/MS and MS3 data from a quadrupole-linear ion trap tandem mass spectrometer were employed to elucidate fragmentation pathways. Fourier transform ion cyclotron resonance measurements afforded excellent mass accuracies for the confirmation of elemental formulae of product ions formed via infrared multiphoton dissociation and sustained off-resonance irradiation collision-induced dissociation. Fragmentation schemes have been devised for the dissociation of hyperforin and adhyperforin in negative and positive ion modes. This information is expected to be especially valuable for the characterization of related compounds, such as degradation products, metabolites and novel synthetic analogs of hyperforin.  相似文献   

6.
Using a quadrupole ion trap mass spectrometer, trimethyl borate was allowed to react with dihydrogen phosphate, deprotonated O-phosphoserine, and a set of hydrogen bonded complexes involving dihydrogen phosphate and neutral acids (phosphoric acid, acetic acid, serine, and O-phosphoserine). The reactions show a consistent pattern in which the initial attack leads to addition with the loss of one or two CH3OH molecules. Collision-activated dissociation (CAD) experiments on the reaction products generally lead to the loss of an additional CH3OH molecule. In no case is a partner from the original hydrogen-bonded complex lost. The results indicate that the reactions lead to structures where the phosphate and its complex partner are covalently bound to the boron. For each of the reactions, rate constants were determined. In the course of CAD experiments (up to MS5), several novel borophosphate structures were identified. The work is supported by ab initio calculations on selected species.  相似文献   

7.
The low-energy CID mass spectra of the [M-H](-) ions of a variety of dipeptides containing glutamic acid have been obtained using cone-voltage collisional activation. Dipeptides with the gamma-linkage, H-Glu(Xxx-OH)-OH, are readily distinguished from those with the alpha-linkage, H-Glu-Xxx-OH, by the much more prominent elimination of H-Xxx-OH from the [M-H](-) ions of the former isomers, resulting in formation of m/z 128, presumably deprotonated pyroglutamic acid. Dipeptides with the reverse linkage, H-Xxx-Glu-OH, show distinctive fragmentation reactions of the [M-H](-) ions including enhanced elimination of CO(2) and formation of deprotonated glutamic acid. Exchange of the labile hydrogens for deuterium has shown that there is considerable interchange of C-bonded hydrogens with labile (N- and O-bonded) hydrogens prior to most fragmentation reactions. All dipeptides show loss of H(2)O from [M-H](-). MS(3) studies show that the [M-H-H(2)O](-) ion derived from H-Glu-Gly-OH has the structure of deprotonated pyroglutamylglycine while the [M-H-H(2)O](-) ions derived from H-Glu(Gly-OH)-OH and H-Gly-Glu-OH show a different fragmentation behaviour indicating distinct structures for the fragment ions.  相似文献   

8.
Atmospheric pressure chemical ionization is known for producing unusual artifacts of the ionization process in some cases. In this work, processes occuring in atmospheric pressure chemical ionization/MS of orotic acid that afforded ions accompanying protonated and deprotonated orotic acid molecules in the spectra were studied. Two processes ran in parallel in the ion source: decarboxylation of neutral orotic acid and collision‐induced dissociation of its protonated or deprotonated form. A procedure discerning pre‐ionization decomposition and post‐ionization dissociation by manipulating ion source parameters was proposed. Experiments with isotopically labeled solvents confirmed ion–molecule reactions of the product of collision‐induced dissociation of protonated orotic acid with solvent molecules in the ion source and even under vacuum in the ion trap. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The bisphosphonate family with a P-C-P structure is a broad class of drugs, widely investigated as potential inhibitors in bone diseases and calcium metabolic disorders. In this study, the mass spectrometric (MS) behavior and fragmentation of clodronate and related bisphosphonate and phosphonate compounds was studied by using negative ion electrospray ionization (ESI) with triple quadrupole and ion trap instruments. The effect of pH on the degree of deprotonation of the polyprotic bisphosphonic and phosphonic acids in negative ion ESI-MS was investigated, and the degree of deprotonation in the ESI mass spectra and the dissociation in the liquid phase were compared. The results provide evidence that the measured ESI mass spectra do not correlate with the chemistry in the liquid phase owing to the decrease in the pH of the solvent droplets during the ion evaporation process and the charge state neutralization in the gas phase. Ion trap MS(n) provided useful information on the fragmentation study of clodronate and related bisphosphonate and phosphonate compounds, in which interesting fragmentation pathways including the direct elimination of carbon monoxide from deprotonated bisphosphonates and formation of a P-P bond were observed. Reactions between the product ions with a -PO(2) group and residual water in the ion trap or in the high-pressure region of the triple quadrupole instrument formed other unexpected fragmentation paths for all the bisphosphonates studied.  相似文献   

10.
Mass-selected polyatomic cations and anions, produced by electrosonic spray ionization (ESSI), were deposited onto polycrystalline Au or fluorinated self-assembled monolayer (FSAM) surfaces by soft landing (SL), using a rectilinear ion trap (RIT) mass spectrometer. Protonated and deprotonated molecules, as well as intact cations and anions generated from such molecules as peptides, inorganic catalysts, and fluorescent dyes, were soft-landed onto the surfaces. Analysis of the modified surfaces was performed in situ by Cs+ secondary ion mass spectrometry (SIMS) using the same RIT mass analyzer to characterize the sputtered ions as that used to mass select the primary ions for SL. Soft-landing times as short as 30 s provided surfaces that yielded good quality SIMS spectra. Chemical reactions of the surfaces modified by SL were generated in an attached reaction chamber into which the surface was transferred under vacuum. For example, a surface on which protonated triethanolamine had been soft landed was silylated using vapor-phase chlorotrimethylsilane before being returned still under vacuum to the preparation chamber where SIMS analysis revealed the silyloxy functionalization. SL and vapor-phase reactions are complementary methods of surface modification and in situ surface analysis by SIMS is a simple way to characterize the products produced by either technique.  相似文献   

11.
The collision-induced dissociation (CID) fragmentation reactions of a variety of deprotonated peptides containing proline have been studied in detail using MS(2) and MS(3) experiments, deuterium labelling and accurate mass measurements when necessary. The [M--H--CO(2)](-) (a(2)) ion derived from H-Pro-Xxx-OH dipeptides shows an unusual fragmentation involving loss of C(2)H(4); this fragmentation reaction is not observed for larger peptides. The primary fragmentation reactions of deprotonated tripeptides with an N-terminal proline are formation of a(3) and y(1) ions. When proline is in the central position of tripeptides, a(3), y(2) and y(1) ions are the primary fragmentation products of [M--H](-), while when the proline is in the C-terminal position, a(3)and y(1) ions are the major primary products. In the latter case, the a(3) ion fragments primarily to the 'b(2) ion; further evidence is presented that the 'b(2) ions have a deprotonated oxazolone structure. Larger deprotonated peptides having at least two amino acid residues N-terminal to proline show a distinct preference for cleavage of the amide bond N-terminal to proline to form, mainly, the appropriate y ion. This proline effect is compared and contrasted with the similar proline effect observed in the fragmentation of protonated peptides containing proline.  相似文献   

12.
Analytical Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA Ion-molecule reactions of neutral methane with analyte ions under normal methane chemical ionization conditions are discussed. Reactant ions can be generated by direct electron ionization (EI) fragmentation, chemical ionization (CI) fragmentation, or collision-induced dissociation (CID). Examples in which products of such reactions appear in mass spectra in both conventional CI sources in “beam” instruments and low pressure CI in a quadrupole ion trap are presented. Also shown is an example in which MS/MS product ions react with neutral methane used for CI in an ion trap. It is shown that it is relatively straightforward to recognize such reactions in a quadrupole ion trap and in certain cases to minimize or preclude them. Effects of various operating parameters have been investigated and are discussed.  相似文献   

13.
The fragmentation reactions of the [M-H](-) ions of the tripeptides H-Gly-Leu-Sar-OH, H-Leu-Gly-Pro-OH and H-Gly-Leu-Gly-OH have been investigated in detail using energy-resolved mass spectrometry, isotopic labelling and MS(3) experiments. It is shown that the major route to the "b(2) ions involves loss of a neutral amine from the a(3) ([M-H-CO(2)](-)) ion rather than being formed directly by fragmentation of the [M-H](-) ion. When there is no C-terminal amidic hydrogen (Sar, Pro), loss of a neutral amine is the dominant primary fragmentation reaction of the a(3) ion. However, when there is a C-terminal amidic hydrogen (Gly), elimination of the N-terminal amino acid residue is the major fragmentation reaction of the a(3) ion and formation of the "b(2) ion is greatly reduced in importance. It is proposed that the "b(2) ions are deprotonated oxazolones.  相似文献   

14.
Fragmentation mechanisms of phytoalexin analogs, including brassitin and brassinin and their glucosylated analogs, have been studied by electrospray (ESI) ion trap (IT) multistage (MS(n), n = 1-4) mass spectrometry, matrix-assisted laser desorption/ionization time-of-flight (MALDI ToF/ToF) and ESI-Q/ToF tandem mass spectrometry techniques. At the fragmentation of sodium adducts a hitherto not described process has been elucidated The proposed mechanism of this process includes cyclization of the brassitin and brassinin cationized adducts through a six-membered cycle of the molecules and the elimination of isocyanate or isothiocyanate from the thio- or dithiocarbamate moiety, giving rise to [M + Na - 43](+) or [M + Na - 59](+) adducts. The elimination of NH=C=O or NH=C=S molecules has been confirmed by the high resolution measurement of the elemental composition of the ions produced and quantum-chemical calculations of the six-membered transition state. Other fragmentation routes include cleavage of an alkane linker, while numerous characteristic hexopyranose pathways are taking place in the glucosylated compounds. The presented theoretical data on the ESI and MALDI behavior of the saccharidic, as well as of the indole aglycon parts, can facilitate structural elucidation of the analogous compounds.  相似文献   

15.
The multistage mass spectrometric (MS/MS and MS3) gas-phase fragmentation reactions of methionine side-chain sulfonium ion containing peptides formed by reaction with a series of para-substituted phenacyl bromide (XBr where X=CH2COC6H4R, and R=--COOH, --COOCH3, --H, --CH3 and --CH2CH3) alkylating reagents have been examined in a linear quadrupole ion trap mass spectrometer. MS/MS of the singly (M+) and multiply ([M++nH](n+1)+) charged precursor ions results in exclusive dissociation at the fixed charge containing side chain, independently of the amino acid composition and precursor ion charge state (i.e., proton mobility). However, loss of the methylphenacyl sulfide side-chain fragment as a neutral versus charged (protonated) species was observed to be highly dependent on the proton mobility of the precursor ion, and the identity of the phenacyl group para-substituent. Molecular orbital calculations were performed at the B3LYP/6-31+G** level of theory to calculate the theoretical proton affinities of the neutral side-chain fragments. The log of the ratio of neutral versus protonated side-chain fragment losses from the derivatized side chain were found to exhibit a linear dependence on the proton affinity of the side-chain fragmentation product, as well as the proton affinities of the peptide product ions. Finally, MS3 dissociation of the nominally identical neutral and protonated loss product ions formed by MS/MS of the [M++H]2+ and [M++2H]3+ precursor ions, respectively, from the peptide GAILM(X)GAILK revealed significant differences in the abundances of the resultant product ions. These results suggest that the protonated peptide product ions formed by gas-phase fragmentation of sulfonium ion containing precursors in an ion trap mass spectrometer do not necessarily undergo intramolecular proton 'scrambling' prior to their further dissociation, in contrast to that previously demonstrated for peptide ions introduced by external ionization sources.  相似文献   

16.
We decoupled electron-transfer dissociation (ETD) and collision-induced dissociation of charge-reduced species (CRCID) events to probe the lifetimes of intermediate radical species in ETD-based ion trap tandem mass spectrometry of peptides. Short-lived intermediates formed upon electron transfer require less energy for product ion formation and appear in regular ETD mass spectra, whereas long-lived intermediates require additional vibrational energy and yield product ions as a function of CRCID amplitude. The observed dependencies complement the results obtained by double-resonance electron-capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and ECD in a cryogenic ICR trap. Compared with ECD FT-ICR MS, ion trap MS offers lower precursor ion internal energy conditions, leading to more abundant charge-reduced radical intermediates and larger variation of product ion abundance as a function of vibrational post-activation amplitude. In many cases decoupled CRCID after ETD exhibits abundant radical c-type and even-electron z-type ions, in striking contrast to predominantly even-electron c-type and radical z-type ions in ECD FT-ICR MS and especially activated ion-ECD, thus providing a new insight into the fundamentals of ECD/ETD.  相似文献   

17.
With the future aim of elucidating the unknown structures of estrogen degradation products, we characterized the dissociation pathways of protonated estrone (E1) under collisional activation in liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments employing a quadrupole time‐of‐flight mass spectrometer. Positive ion and negative ion modes give information on the protonated and deprotonated molecules and their product ions. The mass spectra of estrone methyl ether (CH3‐E1) and estrone‐d4 (E1‐d4) were compared with that of E1 in order (i) to elucidate the dissociation mechanisms of protonated and deprotonated molecules and (ii) to propose likely structures for each product ions. The positive ion acquisition mode yielded more fragmentation. The mass spectra of E1 were compared with those of estradiol (E2), estriol (E3) and 17‐ethynylestradiol (EE2). This comparison allowed the identification of marker ions for each ring of the estrogenic structure. Accurate mass measurements have been carried out for all the identified ions. The resulting ions revealed to be useful for the characterization of structural modifications induced by photolysis on each ring of the estrone molecule. These results are very promising for the determination of new metabolites in the environment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
One hundred fifty-seven nm photodissociation of singly-charged peptide ions induces the cleavage of alpha-carbon to carbonyl-carbon bonds along the backbone. a(n) + 1 radical ions are observed as the primary photolysis products of peptides with N-terminal arginines in a linear ion trap mass spectrometer. The radical elimination pathways undertaken by the a(n) + 1 radical ions to form more stable even-electron species are studied in hydrogen-deuterium (H/D) exchange experiments. Two types of a(n) ions along with d-type ions are observed as secondary elimination products. The relative abundance of each depends on the C-terminal residue of the radical fragment ion.  相似文献   

19.
The discontinuous atmospheric pressure interface (DAPI) has been developed as a facile means for efficiently introducing ions generated at atmospheric pressure to an ion trap in vacuum [e.g., a rectilinear ion trap (RIT)] for mass analysis. Introduction of multiple beams of ions or neutral species through two DAPIs into a single RIT has been previously demonstrated. In this study, a home-built instrument with a DAPI-RIT-DAPI configuration has been characterized for the study of gas-phase ion/molecule and ion/ion reactions. The reaction species, including ions or neutrals, can be introduced from both ends of the RIT through the two DAPIs without complicated ion optics or differential pumping stages. The primary reactant ions were isolated prior to reaction and the product ions were mass analyzed after controlled reaction time period. Ion/molecule reactions involving peptide radical ions and proton-transfer ion/ion reactions have been carried out using this instrument. The gas dynamic effect due to the DAPI operation on internal energy deposition and the reactivity of peptide radical ions has been characterized. The DAPI-RIT-DAPI system also has a unique feature for allowing the ion reactions to be carried out at significantly elevated pressures (in 10–1 Torr range), which has been found to be helpful to speed up the reactions. The viability and flexibility of the DAPI-RIT-DAPI system for the study of gas-phase ion reactions have been demonstrated.
Figure  相似文献   

20.
Gas-phase ion-molecule reactions of anthraquinone derivatives with dimethyl ether (DME) were investigated using an external source ion trap mass spectrometer. Semi-empirical calculations were executed to determine possible reactive sites for the product ions. Collision activated dissociation (CAD) was successfully performed for very low abundance of ion-molecule products. Even for product ions with a relative intensity below 1%, CAD experiments can be successfully performed. Significantly more structural information could be elucidated based on this special feature. Importantly, the CAD spectra of very minor ions could be measured by this ion trap instrument, which significantly enhances the future role of the ion trap as a powerful analytical instrument. CAD of all product ions on anthraquinone compounds typically eliminates neutral molecules such as CO or H(2)O. A hydration phenomenon in the CAD processes resulting from the precursor ions incorporating one molecule of H(2)O and then eliminating one molecule of CO was observed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号