首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Four new heteroleptic ruthenium sensitizers [Ru(4,4'-carboxylic acid-2,2'-bipyridine)(L)(NCS)(2)] (L = 5,5'-bis(4-octylthiophen-2-yl)-2,2'-bipyridine (1), 5,5'-bis(N,N-diphenyl-4-aminophenyl)-2,2'-bipyridine (2), 5,5'-bis(5-(N,N-diphenyl-4-aminophenyl)-thiophen-2-yl)-2,2'-bipyridine (3) and 5,5'-bis(4-octyl-5-(N,N-diphenyl-4-aminophenyl)-thiophen-2-yl)-2,2'-bipyridine (4)) were synthesized, characterized by physicochemical and computational methods, and utilized as photosensitizers in nanocrystalline dye-sensitized solar cells (DSSCs). The λ(max) of the metal-to-ligand charge transfer (MLCT) absorption of these four ruthenium dyes (527 nm for 1, 535 nm for 2, 585 nm for 3 and 553 nm for 4) can be tuned by various structural modifications of the ancillary ligand and it was shown that increasing the conjugation length of such ligand reduces the energy as well as the molar absorption coefficient of the MLCT band. The maximum incident photon to current conversion efficiency (IPCE) of 41.4% at 550 nm, 38.6% at 480 nm, 39.4% at 470 nm and 31.1% at 480 nm for 1-, 2-, 3- and 4-sensitized solar cells were obtained. Respectable power conversion efficiencies of 3.00%, 2.51%, 2.00% and 2.03% were realized, respectively, when the sensitizers 1, 2, 3 and 4 were used in DSSCs under the standard air mass (AM) 1.5 sunlight illumination (versus 5.9% for standard N719).  相似文献   

2.
Two novel heteroleptic sensitizers, Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-hexyloxystyryl)-2,2-bipyridine)(NCS)2 and Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-methoxystyryl)-2,2'-bipyridine) (NCS)2, coded as K-19 and K-73, respectively, have been synthesized and characterized by 1H NMR, FTIR, UV-vis absorption, and emission spectroscopy and excited-state lifetime and spectroelectrochemical measurements. The introduction of the alkoxystyryl group extends the conjugation of the bipyridine donor ligand increasing markedly their molar extinction coefficient and solar light harvesting capacity. The dynamics of photoinduced charge separation following electronic excitation of the K-19 dye was scrutinized by time-resolved laser spectroscopy. The electron transfer from K-19 to the conduction band of TiO2 is completed within 20 fs while charge recombination has a half-life time of 800 s. The high extinction coefficients of these sensitizers enable realization of a new generation of a thin film dye sensitized solar cell (DSC) yielding high conversion efficiency at full sunlight even with viscous electrolytes based on ionic liquids or nonvolatile solvents. An unprecedented yield of over 9% was obtained under standard reporting conditions (simulated global air mass 1.5 sunlight at 1000 W/m2 intensity) when the K-73 sensitizer was combined with a nonvolatile "robust" electrolyte. The K-19 dye gave a conversion yield of 7.1% when used in conjunction with the binary ionic liquid electrolyte. These devices exhibit excellent stability under light soaking at 60 degrees C. The effect of the mesoscopic TiO2 film thickness on photovoltaic performance has been analyzed by electrochemical impedance spectroscopy (EIS).  相似文献   

3.
A new ruthenium(II) complex, tetrabutylammonium [ruthenium (4-carboxylic acid-4'-carboxylate-2,2'-bipyridine)(4,4'-di(2-(3,6-dimethoxyphenyl)ethenyl)-2,2'-bipyridine)(NCS)(2)] (N945H), was synthesized and characterized by analytical, spectroscopic, and electrochemical techniques. The absorption spectrum of the N945H sensitizer is dominated by metal-to-ligand charge-transfer (MLCT) transitions in the visible region, with the lowest allowed MLCT bands appearing at 25 380 and 18 180 cm(-1). The molar extinction coefficients of these bands are 34 500 and 18 900 M(-1) cm(-1), respectively, and are significantly higher when compared to than those of the standard sensitizer cis-dithiocyanatobis(4,4'-dicarboxylic acid-2,2'-bipyridine)ruthenium(II). An INDO/S and density functional theory study of the electronic and optical properties of N945H and of N945 adsorbed on TiO(2) was performed. The calculations point out that the top three frontier-filled orbitals have essentially ruthenium 4d (t(2g) in the octahedral group) character with sizable contribution coming from the NCS ligand orbitals. Most critically the calculations reveal that, in the TiO(2)-bound N945 sensitizer, excitation directs charge into the carboxylbipyridine ligand bound to the TiO(2) surface. The photovoltaic data of the N945 sensitizer using an electrolyte containing 0.60 M butylmethylimidazolium iodide, 0.03 M I(2), 0.10 M guanidinium thiocyanate, and 0.50 M tert-butylpyridine in a mixture of acetonitrile and valeronitrile (volume ratio = 85:15) exhibited a short-circuit photocurrent density of 16.50 +/- 0.2 mA cm(-2), an open-circuit voltage of 790 +/- 30 mV, and a fill factor of 0.72 +/- 0.03, corresponding to an overall conversion efficiency of 9.6% under standard AM (air mass) 1.5 sunlight, and demonstrated a stable performance under light and heat soaking at 80 degrees C.  相似文献   

4.
A heteroleptic polypyridyl ruthenium complex, cis-Ru(4,4'-bis(5-octylthieno[3,2-b]thiophen-2-yl)-2,2'-bipyridine)(4,4'-dicarboxyl-2,2'-bipyridine)(NCS)2, with a high molar extinction coefficient of 20.5 x 10(3) M(-1) cm(-1) at 553 nm has been synthesized and demonstrated as a highly efficient sensitizer for a dye-sensitized solar cell, giving a power conversion efficiency of 10.53% measured under an irradiation of air mass 1.5 global (AM 1.5G) full sunlight.  相似文献   

5.
Scalar relativistic density functional theory (DFT) has been used to explore the spectroscopic and redox properties of Ruthenium-type photovoltaic sensitizers, trans-[Ru((R)L)(NCS)(2)] ((R)L = 4,4'-di-R-4',4'-bis(carboxylic acid)-2,2' : 6',2' : 6',2'-quaterpyridine, R = H (1), Me (2), (t)Bu (3) and COOH (4); (R)L = 4,4'-di-R-4',4'-bis(carboxylic acid)-cycloquaterpyridine, R = COOH (5)). The geometries of the molecular ground, univalent cationic and triplet excited states of 1-5 were optimized. In complexes 1-4, the quaterpyridine ligand retains its planarity in the molecular, cationic and excited states, although the C≡N-Ru angle representing the SCN → Ru coordination approaches 180° in the univalent cationic and triplet excited states. The theoretically designed complex 5 displays a curved cycloquaterpyridine ligand with significantly distorted SCN → Ru coordination. The electron spin density distributions reveal that one electron is removed from the Ru/NCS moieties upon oxidation and the triplet excited state is due to the Ru/NCS → polypyridine charge transfer (MLCT/L'LCT). The experimental absorption spectra were well reproduced by the time-dependent DFT calculations. In the visible region, two MLCT/L'LCT absorption bands were calculated to be at 652 and 506 nm for 3, agreeing with experimental values of 637 and 515 nm, respectively. The replacement of the R- group with -COOH stabilizes the lower-energy unoccupied orbitals of π* character in the quaterpyridine ligand in 4. This results in a large red shift for these two MLCT/L'LCT bands. In contrast, the lower-energy MLCT/L'LCT peak of 5 nearly disappears due to the introduction of cycloquaterpyridine ligand. The higher energy bands in 5 however become broader and more intense. As far as absorption in the visible region is concerned, the theoretically designed 5 may be a very promising sensitizer for DSSC. In addition, the redox potentials of 1-5 were calculated and discussed, in conjunction with photosensitizers such as cis-[Ru(L(1))(2)(X)(2)] (L(1) = 4,4'-bis(carboxylic acid)-2,2'-bipyridine; X = NCS(-) (6), Cl(-) (7) and CN(-) (8)), cis-[Ru(L(1)')(2)(NCS)(2)] (L(1)' = 4,7-bis(carboxylic acid)-1,10-phenanthroline, 9), [NH(4)][Ru(L(2))(NCS)(3)] (L(2) = 4,4',4'-tris(carboxylic acid)-2,2' : 6',2'-terpyridine, 10) and [Ru(L(2))(NCS)(3)](-) (11).  相似文献   

6.
李襄宏 《无机化学学报》2010,26(8):1389-1393
合成了2个新的含1,3,4-噁二唑官能团的联吡啶配体及其相应的钌髤配合物Ru(CPOD)(dcbpy)(NCS)2(Ru-1)和Ru(DPOD)(dcbpy)(NCS)2(Ru-2)(CPOD=4-羧基-4′-[2-(4-壬氧基苯基)-5-苯基-1,3,4-噁二唑]-2,2′-二联吡啶,DPOD=4,4′-二[2-(4-壬氧基苯基)-5-苯基-1,3,4-噁二唑]-2,2′-二联吡啶,dcbpy=4,4′-二羧基-2,2′-二联吡啶),并通过红外光谱、循环伏安、紫外可见吸收光谱、元素分析和光电流-光电压曲线实验对其结构和光电转化性质进行了表征。这些配合物的最大MLCT态吸收位于555nm,摩尔消光系数可达1.43×104L·mol-1·cm-1。它们的光化学和电化学性质表明:激发态能级与TiO2导带底能级匹配,电子能够注入到TiO2导带中。将它们敏化到纳米晶TiO2电极上,光电转化效率为2.4%。  相似文献   

7.
A high molar extinction coefficient charge transfer sensitizer tetrabutylammonium [Ru(4,-carboxylic acid-4′-carboxylate-2,2′-bipyridine)(4,4′-di-(2-(3,6-dimethoxyphenyl)ethenyl)-2,2′-bipyridine)(NCS)2], is developed which upon anchoring onto nanocrystalline TiO2 films exhibit superior power conversion efficiency compared to the standard sensitizer bistetrabutylammonium cis-dithiocyanatobis(4,4′-dicarboxylic acid-2,2′-bipyridine)ruthenium(II) (N719). The new sensitizer anchored TiO2 films harvest visible light very efficiently over a large spectral range and produce a short-circuit photocurrent density of 18.84 mA/cm2, open-circuit voltage 783 mV and fill factor 0.73, resulting remarkable solar-to-electric energy conversion efficiency (η) 10.82, under Air Mass (AM) 1.5 sunlight. The Time Dependent Density Functional Theory (TDDFT) excited state calculations of the new sensitizer show that the first three HOMOs have ruthenium t2g character with sizable contribution coming from the NCS ligands and the π-bonding orbitals of the 4,4′-di-(2-(3,6-dimethoxyphenyl)ethenyl)-2,2′-bipyridine. The LUMO is a π* orbital localized on the 4,4′-dicarboxylic acid-2,2′-bipyridine ligand.  相似文献   

8.
In this work, two ligands: 4-(trans-2-Methyl-2-butenoic acid)-2,2'-bipyridine) (L(1)) and 5-(trans-2-methyl-2-butenoic acid)-1,10-phenanthroline (L(2)), with the corresponding mixed-ligand heteroleptic Ru(II) complex were synthesized and characterized by FT-IR, 1H-, 13C-NMR spectroscopy and elemental analysis. The influence of the mixed functionalized polypyridyl ruthenium(II) complex on the photophysical and electrochemical properties were investigated and compared to individual single-ligand homoleptic complexes. Interestingly, the mixed-ligand complex formulated as [RuL(1)L(2)(NCS)(2)] exhibits broad and intense metal-to-ligand charge transfer (MLCT) absorption with a high molar extinction coefficient (λ(max) = 514 nm, ε = 69,700 M(-1) cm(-1)), better than those of individual single-ligand complexes, [Ru(L(1))(2)(NCS)(2)] and [Ru(L(2))(2)(NCS)(2)], and a strong photoluminescence intensity ratio in the red region at λ(em) = 686 nm. The electrochemical properties of the complex indicated that the redox processes are ligand-based.  相似文献   

9.
Amphiphilic ligands 4,4'-bis(1-adamantyl-aminocarbonyl)-2,2'-bipyridine (L(1)), 4,4'-bis[5-[N-[2-(3beta-cholest-5-en-3-ylcarbamate-N-yl)ethyl]aminocarbonyl]]-2,2'-bipyridine (L(2)), 4,4'-bis[5-[N-[2-(3beta-cholest-5-en-3-ylcarbamate-N-yl)propyl]aminocarbonyl]]-2,2'-bipyridine (L(3)), and 4,4'-bis(dodecan-12-ol)-2,2'-bipyridine (L(4)) and their heteroleptic ruthenium(II) complexes of the type [Ru(II)LL(1)(NCS)(2)] (5), [Ru(II)LL(2)(NCS)(2)] (6), [Ru(II)LL(3)(NCS)(2)] (7), and [Ru(II)LL(4)(NCS)(2)] (8) (where L = 4,4'-bis(carboxylic acid)-2,2'-bipyridine) have been synthesized starting from dichloro(p-cymene)ruthenium(II) dimer. All the ligands and the complexes were characterized by analytical, spectroscopic, and electrochemical techniques. The performance of these complexes as charge-transfer photosensitizers in nanocrystalline TiO(2)-based solar cells was studied. When complexes 5-8 anchored onto a 12 + 4 microm thick nanocrystalline TiO(2) films, very efficient sensitization was achieved (85 +/- 5% incident photon-to-current efficiencies in the visible region, using an electrolyte consisting of 0.6 M butylmethylimidazolium iodide, 0.05 M I(2), 0.1 M LiI, and 0.5 M tert-butyl pyridine in 1:1 acetonitrile + valeronitrile). Under standard AM 1.5 sunlight, the complex 8 yielded a short-circuit photocurrent density of 17 +/- 0.5 mA/cm(2), the open-circuit voltage was 720 +/- 50 mV, and the fill factor was 0.72 +/- 0.05, corresponding to an overall conversion efficiency of 8.8 +/- 0.5%.  相似文献   

10.
A novel heteroleptic ruthenium complex carrying a heteroaromatic-4,4'-pi-conjugated 2,2'-bipyridine [Ru(II)LL'(NCS)(2)] (L = 4,4'-bis[(E)-2-(3,4-ethylenedioxythien-2-yl)vinyl]-2,2'-bipyridine, L' = 4,4'-(dicarboxylic acid)-2,2'-bipyridine) was synthesized and used in dye-sensitized solar cells, yielding photovoltaic efficiencies of 9.1% under standard global AM 1.5 sunlight.  相似文献   

11.
Hexafluorophosphate salts of mononuclear complexes [Ru(II)Cl(L)(terpy)]+ (L = dmbpy (1); dpbpy (2), sambpy (3), and dpp (7), and binuclear complexes [Ru(II)2Cl2(dpp)(terpy)2]2+ (8) and [Ir(III)Ru(II)Cl2(dpp)(terpy)2]3+ (9) were prepared and characterized. Abbreviations of the ligands are bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, dpbpy = 4,4'-diphenyl-2,2'-bipyridine, dpp = 2,3-bis(2-pyridyl)pyrazine, sambpy = 4,4'-bis((S)-(+)-alpha-1-phenylethylamido)-2,2'-bipyridine, and terpy = 2,2':6',2'-terpyridine. The absorption spectra of 8 and 9 are dominated by ligand-centered bands in the UV region and by metal-to-ligand charge-transfer bands in the visible region. The details of their spectroscopic and electrochemical properties were investigated. In both binuclear complexes, it has been found that the HOMO is based on the Ru metal, and LUMO is dpp-based. [Ir(III)Ru(II)Cl2(dpp)(terpy)2]3+, indicating intense emission at room temperature, and a lifetime of 154 ns. The long lifetime of this bimetallic chromophore makes it a useful component in the design of supramolecular complexes.  相似文献   

12.
Dye-sensitized solar cells based on nanocrystalline TiO(2) have been fabricated with an amphiphilic ruthenium sensitizer [Ru (4,4'-dicarboxylic acid-2,2'-bipyridine) (4,4'-bis(p-hexyloxystyryl)-2,2'-bipyridine)(NCS)(2)], coded as K-19, and 4-guanidinobutyric acid (GBA) as coadsorbent. The cells showed a approximately 50 mV increase in open-circuit voltage and a similar current in comparison with cells without GBA cografting. The performance of both types of devices was evaluated on the basis of their photocurrent-voltage characteristics, dark current measurements, cyclic voltammetry, electrochemical impedance spectroscopy, and phototransient decay methods. The results indicate that GBA shifted the conduction band of TiO(2) toward a more negative potential and reduced the interfacial charge-transfer reaction from conduction band electrons to triiodide in the electrolyte (also known as the back reaction). In addition, the devices with GBA cografting showed an excellent stability with a power conversion efficiency of approximately 8% under simulated full sunlight (air mass 1.5, 100 mW cm(-2)) during visible light soaking at 60 degrees C.  相似文献   

13.
Sun Y  Hudson ZM  Rao Y  Wang S 《Inorganic chemistry》2011,50(8):3373-3378
Four new Ru(II) complexes, [Ru(bpy)(2)(4,4'-BP2bpy)][PF(6)](2) (1), [Ru(t-Bu-bpy)(2)(4,4'-BP2bpy)][PF(6)](2) (2), [Ru(bpy)(2)(5,5'-BP2bpy)][PF(6)](2) (3), and [Ru(t-Bu-bpy)(2)(5,5'-BP2bpy)][PF(6)](2) (4) have been synthesized (where 4,4'-BP2bpy = 4,4'-bis(BMes(2)phenyl)-2,2'-bpy; 5,5'-BP2bpy = 5,5'-bis(BMes(2)phenyl)-2,2'-bpy (4,4'-BP2bpy); and t-Bu-bpy = 4,4'-bis(t-butyl)-2,2'-bipyridine). These new complexes have been fully characterized. The crystal structures of 3 and 4 were determined by single-crystal X-ray diffraction analyses. All four complexes display distinct metal-to-ligand charge transfer (MLCT) phosphorescence that has a similar quantum efficiency as that of [Ru(bpy)(3)][PF(6)](2) under air, but is at a much lower energy. The MLCT phosphorescence of these complexes has been found to be highly sensitive toward anions such as fluoride and cyanide, which switch the MLCT band to higher energy when added. The triarylboron groups in these compounds not only introduce this color switching mechanism, but also play a key role in the phosphorescence color of the complexes.  相似文献   

14.
When tested in solar cells, ruthenium polypyridinic dyes with extended π systems show an enhanced light-harvesting capacity that is not necessarily reflected by a high (collected electrons)/(absorbed photons) ratio. Provided that metal-to-ligand charge transfer bands, MLCT, are more effective, due to their directionality, than intraligand (IL) π-π* bands for the electron injection process in the solar cell, it seems important to explore and clarify the nature of the absorption bands present in these types of dyes. This article aims to elucidate if all the absorbed photons of these dyes are potentially useful in the generation of electric current. In other words, their potentiality as dyes must also be analyzed from the point of view of their contribution to the generation of excited states potentially useful for direct injection. Focusing on the assignment of the absorption bands and the nature of the emitting state, a systematic study for a series of ruthenium complexes with 4,4'-distyryl-2,2'-dipyridine (LH) and 4,4'-bis[p-(dimethylamino)-α-styryl]-2,2'-bipyridine (LNMe(2)) "chromophoric" ligands was undertaken. The observed experimental results were complemented with TDDFT calculations to elucidate the nature of the absorption bands, and a theoretical model was proposed to predict the available energy that could be injected from a singlet or a triplet excited state. For the series studied, the results indicate that the percentage of MLCT character to the anchored ligand for the lower energy absorption band follows the order [Ru(deebpy)(2)(LNMe(2))](PF(6))(2) > [Ru(deebpy)(2)(LH)](PF(6))(2) > [Ru(deebpy)(LH)(2)](PF(6))(2), where deebpy is 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine, predicting that, at least from this point of view, their efficiency as dyes should follow the same trend.  相似文献   

15.
Nanocrystalline thin films of TiO2 cast on an optically transparent indium tin oxide glass were sensitized with ruthenium homo- and heterobinuclear complexes, [LL'Ru(BL)RuLL']n+ (n = 2, 3), where L and L' are 4,4'-dicarboxy-2,2'-bipyridine (dcb) and/or 2,2'-bipyridine (bpy) and BL is a rigid and linear heteroaromatic entity (tetrapyrido[3,2-a:2',3'-c:3",2"-h:2'",3'"-j]phenazine (tpphz) or 1,4-bis([1,10]phenanthroline[5,6-d]imidazol-2-yl)benzene (bfimbz)). The photophysical behavior of the RuII-RuII diads in solution indicated the occurrence of intercomponent energy transfer from the upper-lying Ru --> bpy charge-transfer (CT) excited state of the Ru(bpy)(2) moiety to the lower-lying Ru --> dcb CT excited state of the Ru(bpy)(dcb) (or Ru(dcb)(2)) subunit in the heterobinuclear complexes. These sensitizer diads adsorbed on nanostructured TiO2 surfaces in a perpendicular or parallel attachment mode. Adsorption was through the dcb ligands on one or both chromophoric subunits. The behavior of the adsorbed species was studied by nanosecond time-resolved transient absorption and emission spectroscopy, as well as by photocurrent measurements. In the TiO2-adsorbed samples where BL was bfimbz, the electron injection kinetics was very fast and could not be resolved because an electron is promoted from the metal center to the dcb ligand directly linked to the semiconductor. In the TiO2-adsorbed samples where BL was tpphz, for which, in the excited state, a BL localization of the lowest-lying metal-to-ligand charge transfer (MLCT) is observed, slower injection rates (9.5 x 10(7) s(-1) in [(bpy)(2)Ru(tpphz)Ru(bpy)(dcb(-))](3+)/TiO2 and 5.5 x 10(7) s(-1) in [(bpy)(dcb)Ru(tpphz)Ru(bpy)(dcb(-))](3+)/TiO2) were obtained. Among the systems, the heterotriad assembly [(bpy)(2)Ru(bfimbz)Ru(bpy)(dcb(2-))](2+)/TiO2 gave the best photovoltaic performance. In the first case, this was attributed to a fast electron injection initiated from a dcb-localized MLCT; in the second case, this is attributed to improved molecular orientation on the surface, which was due to rigidity and, at the same time, linearity of the heterotriad system, resulting in a slower charge recombination between the injected electron and the hole.  相似文献   

16.
Transient anisotropy measurements are reported as a new spectroscopic tool for mechanistic characterization of photoinduced charge-transfer and energy-transfer self-exchange reactions at molecule-semiconductor interfaces. An anisotropic molecular subpopulation was generated by photoselection of randomly oriented Ru(II)-polypyridyl compounds, anchored to mesoscopic nanocrystalline TiO(2) or ZrO(2) thin films, with linearly polarized light. Subsequent characterization of the photoinduced dichromism change by visible absorption and photoluminescence spectroscopies on the nano- to millisecond time scale enabled the direct comparison of competitive processes: excited-state decay vs self-exchange energy transfer, or interfacial charge recombination vs self-exchange hole transfer. Self-exchange energy transfer was found to be many orders-of-magnitude faster than hole transfer at the sensitized TiO(2) interfaces; for [Ru(dtb)(2)(dcb)](PF(6))(2), where dtb is 4,4'-(C(CH(3))(3))(2)-2,2'-bipyridine and dcb is 4,4'-(COOH)(2)-2,2'-bipyridine, anchored to TiO(2), the energy-transfer correlation time was θ(ent) = 3.3 μs while the average hole-transfer correlation time was <θ(h+)> = 110 ms, under identical experimental conditions. Monte Carlo simulations successfully modeled the anisotropy decays associated with lateral energy transfer. These mesoscopic, nanocrystalline TiO(2) thin films developed for regenerative solar cells thus function as active "antennae", harvesting sunlight and transferring energy across their surface. For the dicationic sensitizer, [Ru(dtb)(2)(dcb)](PF(6))(2), anisotropy changes indicative of self-exchange hole transfer were observed only when ions were present in the acetonitrile solution. In contrast, evidence for lateral hole transfer was observed in neat acetonitrile for a neutral sensitizer, cis-Ru(dnb)(dcb)(NCS)(2), where dnb is 4,4'-(CH(3)(CH(2))(8))(2)-2,2'-bipyridine, anchored to TiO(2). The results indicate that mechanistic models of interfacial charge recombination between electrons in TiO(2) and oxidized sensitizers must take into account diffusion of the injected electron and the oxidized sensitizer. The phenomena presented herein represent two means of concentrating potential energy derived from visible light that could be used to funnel energy to molecular catalysts for multiple-charge-transfer reactions, such as the generation of solar fuels.  相似文献   

17.
Three new tetrathiafulvalene-substituted 2,2'-bipyridine ligands, cis-bpy-TTF(1), trans-bpy-TTF(1), and cis-bpy-TTF(2) have been prepared and characterized. X-ray analysis of trans-bpy-TTF(1) is also reported. Such ligands have been used to prepare two new trinuclear Ru(II) complexes, namely, [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy-TTF(1))](PF(6))(6) (9; bpy=2,2'-bipyridine; 2,3-dpp=2,3-bis(2'-pyridyl)pyrazine) and [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy-TTF(2))](PF(6))(6) (10). These compounds can be viewed as coupled antennas and charge-separation systems, in which the multichromophoric trinuclear metal subunits act as light-harvesting antennas and the tetrathiafulvalene electron donors can induce charge separation. The absorption spectra, redox behavior, and luminescence properties (both at room temperature in acetonitrile and at 77 K in a rigid matrix of butyronitrile) of the trinuclear metal complexes have been studied. For the sake of completeness, the mononuclear compounds [(bpy)(2)Ru(bpy-TTF(1))](PF(6))(2) (7) and [(bpy)(2)Ru(bpy-TTF(2))](PF(6))(2) (8) were also synthesized and studied. The properties of the tetrathiafulvalene-containing species were compared to those of the model compounds [Ru(bpy)(2)(4,4'-Mebpy)](2+) (4,4'-Mebpy=4,4'-dimethyl-2,2'-bipyridine) and [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy)](6+). The absorption spectra and redox behavior of all the new metal compounds can be interpreted by a multicomponent approach, in which specific absorption features and redox processes can be assigned to specific subunits of the structures. The luminescence properties of the complexes in rigid matrices at 77 K are very similar to those of the corresponding model compounds without TTF moieties, whereas the new species are nonluminescent, or exhibit very weak emissions relative to those of the model compounds in fluid solution at room temperature. Time-resolved transient absorption spectroscopy confirmed that the potentially luminescent MLCT states of 7-10 are significantly shorter lived than the corresponding states of the model species. Photoinduced electron-transfer processes from the TTF moieties to the (excited) MLCT chromophore(s) are held responsible for the quenching processes.  相似文献   

18.
Ionic liquids containing the nitrile and vinyl functional groups attached to imidazolium cations combined with various anions, e.g., iodide, bis[(trifluoromethyl)sulfonyl]imide ([TFSI]-), or dicyanamide ([N(CN)2]-), have been prepared and characterized. These ionic liquids have been successfully used as electrolytes for dye-sensitized solar cells based on nanocrystalline TiO2 with the amphiphilic ruthenium sensitizer [ruthenium (4,4'-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-hexyloxystyryl)-2,2'-bipyridine)][NCS]2 (coded K-19). The iodide salt was used in 3-methoxypropionitrile-based electrolytes, and the performances of both types of devices were evaluated on the basis of their photocurrent density-voltage characteristics and dark current measurements, demonstrating that the functional groups do not exert a detrimental effect on the performance. The solid-state structure of the nitrile-functionalized salt [C1C3CN(im)]I has also been established by single-crystal X-ray diffraction, revealing extensive hydrogen bonding between the cation protons and the iodide.  相似文献   

19.
We report the synthesis, structure and properties of the cyanide-bridged dinuclear complex ions [Ru(L)(bpy)(μ-NC)M(CN)(5)](2-/-) (L = tpy, 2,2';6',2'-terpyridine, or tpm, tris(1-pyrazolyl)methane, bpy = 2,2'-bipyridine, M = Fe(II), Fe(III), Cr(III)) and the related monomers [Ru(L)(bpy)X](2+) (X = CN(-) and NCS(-)). All the monomeric compounds are weak MLCT emitters (λ = 650-715 nm, ? ≈ 10(-4)). In the Fe(II) and Cr(III) dinuclear systems, the cyanide bridge promotes efficient energy transfer between the Ru-centered MLCT state and a Fe(II)- or Cr(III)-centered d-d state, which results either in a complete quenching of luminescence or in a narrow red emission (λ ≈ 820 nm, ? ≈ 10(-3)) respectively. In the case of Fe(III) dinuclear systems, an electron transfer quenching process is also likely to occur.  相似文献   

20.
The unique behavior of a new Ru(II) diimine complex, Ru(bpy)(2)(L)(2+) (where L is 4-methyl-4'-[p-(dimethyl- amino)-alpha-styryl]-2,2'-bipyridine, bpy is 2,2'-bipyridine), was studied in detail. Due to the strong electron donating property of the amino group, an ILCT (intraligand charge transfer) state is involved either in the absorption spectra or in the time-resolved emission spectra. Dual emission based on (3)MLCT and (3)ILCT states was observed at room temperature for the first time via a time-resolved technique in Ru(II) diimine complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号