首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The migration and diffusion modulated excitation energy transfer has been studied in a new dye pair 7-diethylamino-4-methylcoumarin (donor) to 3,3'-dimethyloxacarbocyanine iodide (acceptor) by steady-state and picosecond time-resolved spectroscopy. To reduce the artifact of self-absorption, at high donor concentrations, the time-resolved studies have been carried out in thin films of polyvinyl alcohol (solid matrix) and in methanol (liquid phase) at front-face geometry of excitation. The Forster-type (nonradiative) energy transfer [Discuss. Faraday Soc. 27, 7 (1959)] takes place directly from donor to acceptor in case of solid matrix, while Yokota-Tanimoto model [J. Phys. Soc. Jpn. 22, 779 (1967)] for diffusion has been found to be operating in the liquid phase. It has been found here that the high interaction strength between donor and acceptor molecules as compared to that among donors masks the effect of energy migration and diffusion at high donor concentrations. The rate and efficiency of energy transfer increase with increasing the acceptor concentration. This has been confirmed by the study of acceptor kinetics.  相似文献   

2.
3.
Excitation energy transfer between the dye pair acriflavine (donor) to rhodamine-6G (acceptor) in various polymers [polyvinyl alcohol (PVA), cellulose acetate, and polymethyl methacrylate (PMMA)] was studied using steady-state and time-resolved fluorescence spectroscopy at room temperature. In all these polymers, at higher acceptor concentrations, direct energy transfer from acriflavine to rhodamine-6G followed the F?rster theory, which is indicated by the agreement in the values of the observed critical transfer distance with that calculated from spectral overlap. On the other hand, at low acceptor concentrations, the excitation energy migration influences the kinetics, resulting in a significantly higher value of the observed critical transfer distance, which is explained on the basis of Loring et al. (Loring, R. F.; Anderson, H. C.; Fayer, M. D. J. Chem. Phys. 1984, 80, 5731-5744) and Huber (Huber, D. L. Phys. Rev. B: Condens. Matter Mater. Phys. 1979, 20 2307-2314) theories. It was observed that the spectral overlap for donor-donor transport (excitation migration) and donor-acceptor transfer (energy transfer) and thereby other energy transfer parameters were influenced by the microenvironment of the polymers. The efficiency of energy transfer (eta) was the highest in PMMA and the lowest in PVA. Further, the study of acceptor dynamics under energy transfer showed that the rise time of the acceptor also depends on the nature of the polymer microenvironment.  相似文献   

4.
To clarify whether the excitation energy transfer from a donor molecule or aggregate to a remote acceptor molecule or aggregate can be caused by nonadiabatic interaction as expected in our previous studies 4 ; 5 , we carried out ab initio calculations for three donor–acceptor systems. Even when the acceptor is separated from the donor by 15 Å, it was found that nonadiabatic coupling elements have moderately large values in the nuclear configuration region where the potential energy surfaces at two excited states for the donor–acceptor system are close to each other; otherwise, the conical intersection between the two excited‐state potential energy surfaces appears. In addition, it was found that the adiabatic approximation for the donor–acceptor system holds in the nuclear configuration region in which the initial and final wave packets in the process of the excitation energy transfer lie. These findings lead to the conclusion that the excitation energy transfer between two remote molecules or aggregates can be caused by the nonadiabatic interaction. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 36–43, 2003  相似文献   

5.
Intramolecular energy migration and trapping by acceptor species which are an integral part of a macromolecule have been studied in three polymer systems using the techniques of fluorescence depolarization. The effect of energy migration produces depolarization of both donor and acceptor emissions. Copolymers of styrene with 1-vinylaphthalene or 2-phenyl-5-(p-vinyl)phenyloxazole have been studied. In addition, energy transfer to a terminal anthracene species has been studied in a polyvinyltoluene sample. When energy transfer occurs with unit efficiency, the depolarization of acceptor emission reflects the path length available to the migrating exciton. In cases of lesser transfer efficiency, the acceptor emission exhibits depolarization characteristics which reflect the distribution of migration lengths from the site of energy absorption.  相似文献   

6.
Exciton migration over long distances is a key issue for various applications in organic electronics. We investigate a disordered material system which has the potential for long exciton diffusion lengths in combination with a high versatility. The perylene bisimide dye Perylene Red is incorporated in a polymer matrix with a high concentration. The dye molecules represent active sites with a narrow energy distribution for the electronically excited states. Excitons can be efficiently exchanged between them by F?rster resonance energy transfer (FRET). The narrow energy distribution reduces drastically the trapping probability of the excitons compared to polymers and allows for long transfer distances. To characterize the mobility of the excitons and their diffusion length the dye Oxazine 1 is added as an acceptor in low concentration and the transfer probability to the acceptor is determined by measuring the reduction of Perylene Red fluorescence. The quenched quantum yield is measured for dye concentrations varying from 0.05?M to 0.15 M for Perylene Red and from 0.3 mM to 3 mM for Oxazine 1. The experimental results are compared to a model which assumes that excitons can diffuse through the material by FRET between Perylene Red sites and are trapped at an acceptor with a final hetero FRET step. We find a quite good match between theory and experiment though the observed diffusion constant is about two times smaller than the calculated one. The exciton diffusion length extracted from the data is 30 nm for a Perylene Red concentration of 0.1 M and demonstrates that long distance energy transfer is possible in this disordered material system.  相似文献   

7.
The reorganization energy is an important quantity controlling electron transfer rates. The internal contribution arising from the energy to reorganize donor/acceptor bonds can be evaluated by the "direct" and "4-point" methods. We examine how spatial separation leading to the noninteracting character of the donor and acceptor affects the reorganization energy. We show that the direct method captures contributions from interaction of the donor and acceptor while the 4-point method does not, and the two methods converge at large separation. Comparing reorganization energies determined by the two methods yields a measure of the degree of interaction between the initial and final states. The analysis is illustrated in the characterization of small polarons in iron oxides.  相似文献   

8.
Steady-state and time-resolved photoluminescence have been used to investigate the optical properties of bilayer and blend films made from poly(9,9-dioctyl-fluorene-2,7-diyl) (PFO) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH PPV). Energy transfer has been observed in both systems. From steady-state photoluminescence measurements, the energy transfer was characterized by the effective enhancement of the MEH PPV emission intensity after exciting the donor states. Relatively faster decays for the PFO donor emission have been observed in the blends as well as in the bilayer structures, confirming effective energy transfer in both structures. In contrast to the bilayers, the time decay of the acceptor emission in the blends presents a long decay component, which was assigned to the exciplex formation in these samples. For the blends the acceptor emission is in fact a composition of exciplex and MEH PPV emissions, the later being due to Fo?rster energy transfer from PFO. In the bilayers, the exciplex is not observed and temperature dependence photoluminescence measurements show that exciton migration has no significant contribution to the energy transfer. The efficiency and very long range of the energy transfer in the bilayers is explained assuming a surface-surface interaction geometry where the donor/acceptor distances involved are much longer than the common Fo?rster radius.  相似文献   

9.
A kinetic Monte Carlo method was used to simulate the diffusion of reptating polymer chains across an interface. A time‐resolved fluorescence technique in conjunction with a direct energy transfer method was used to measure the extent of diffusion of dye‐labeled reptating polymer chains. The diffusion of donor‐ and acceptor‐labeled polymer chains between adjacent compartments was randomly generated. The fluorescence decay profiles of donor molecules were simulated at several diffusion steps to produce mixing of the polymer chains. Mixing ratios of donor‐ and acceptor‐labeled polymer chains in compartments were measured at various stages (snapshots) of diffusion. It was observed that for a given molecular weight, the average interpenetration contour length was found to be proportional to the mixing ratio. Monte Carlo analysis showed that the curvilinear diffusion coefficient is inversely proportional to the weight of polymer chains during diffusion.  相似文献   

10.
Theoretical treatments of singlet energy transfer are reviewed with the objective of determining the expressions most relevant for polymeric systems. Observations of singlet energy transfer from 1,3 diphenyl oxazole to 1,4 di[2-(4-methyl 5-phenyl oxazolyl)]-benzene, anthracene and benzophenone confirm that the Förster relationships are valid for dilute solutions of these small molecules. For a polymer donor in which there exists spectral overlap in absorption and emission, there is the possibility of energy migration along the chain. Under these conditions, and where acceptor diffusion may be important, it is found that relationships due to Yokota and Tanimoto are the most useful in both fluid and polymeric environments. Coefficients for migration of singlet energy down chains of poly(N-vinyl carbazole), poly(2-vinyl) naphthalene) and copolymers of N-vinyl carbazole with methyl acrylate have been evaluated. They are consistent with a model in which energy is transferred by a random walk series of Förster interactions between spectroscopically active nearest neighbours.  相似文献   

11.
Herein, we report a highly sensitive luminescent thin film chemosensor constructed out of a small-molecule donor/acceptor system. Two types of films were compared: one using a small-molecule crystalline donor/acceptor pair and the other using a donor-graft polymer/small-molecule acceptor pair. The acceptor selected for this proof of concept responds to acid, causing its absorption and emission bands to red-shift, which increases spectral overlap with the donor. This increase in overlap greatly enhances energy transfer from the acceptor to the donor. Signal amplification was ascertained by measuring the ratio of acceptor fluorescence when the donor was excited versus direct excitation of the acceptor. Both types of films exhibited large amplification. For the polymeric system, the mechanism of energy migration was investigated by the use of steady-state fluorescence spectroscopy. The mechanism was determined to be dominated by an exciton-hopping process.  相似文献   

12.
Inspired by structures of antenna-reaction centers in photosynthesis,the complex micelle was prepared from zinc tetra-phenyl porphyrin (ZnTPP),fullerene derivative (PyC60) and poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-bPCL).The core-shell structure made the hydrophobic donor-acceptor system work in aqueous.In micellar core,coordination interaction occurred between ZnTPP and PyC60 molecules which ensured the enhanced energy migration from the donor to the acceptor.The enhanced interaction between porphyrin and fullerene was confirmed by absorption,steady-state fluorescence and transient fluorescence.The generation of singlet oxygen and superoxide radical was detected by iodide method and reduction of nitro blue tetrazolium,respectively,which confirmed that electron transfer reaction in the complex micellar core occurred.Moreover,the complex micelle exhibited effective electron transfer performance in photodebromination of 2,3-dibromo-3-phenylpropionic acid.The complex micellar structure endowed the donor-acceptor system with improved stability under irradiation.This strategy could be helpful for designing new electron transfer platform and artificial photosynthetic system.  相似文献   

13.
Multiple charge separation has been successfully realized by a proton-coupled electron transfer reaction in an organic cocrystal. Benefiting from the adjustable electronic energy level of the electron donor and acceptor through thermal-induced proton migration, distinct optical absorption behaviors combined with color changes to blue or green are observed in these charge-separated states. It is of interest to note that such charge-separated states exhibit a longer lifetime of over a month as a result of the excellent coplanarity and π-π interaction of the electron acceptors. Moreover, the enhanced absorption toward longer wavelengths endows the charge-separated state with near-infrared (808 nm) photothermal conversion for imaging and bacterial inhibition, whereby the conversion performance can be controlled by the degree of proton migration.  相似文献   

14.
The present work has for the first time compared extraction of basic analytes across a supported liquid membrane (SLM) based on (1) passive diffusion in a pH gradient sustained over the SLM and (2) electrokinetic migration in an electrical field sustained over the SLM. For the passive diffusion experiments, performed as liquid-phase microextraction (LPME), five basic drugs were extracted under strong agitation from alkaline samples (10mM NaOH), through 2-nitrophenyl octylether immobilized in the pores of a porous hollow fibre of polypropylene (SLM), and into 25 microl of 10mM HCl as the acceptor solution. The experiments based on electrokinetic migration, performed as electro membrane isolation (EMI), were conducted under strong agitation from acidic samples (10mM HCl), through the same SLM as in LPME, and into 25 microl of 10mM HCl as the acceptor solution. Whereas LPME relied on diffusion and to some extent also convection as the principal mechanisms of mass transfer, mass transfer in EMI also included a strong contribution from electrokinetic migration. Thus, extraction kinetics was improved by a factor between 6 and 17 utilizing EMI instead of LPME. This major difference in terms of speed was especially pronounced from small sample volumes (150 microl), and suggest that EMI may be a very interesting future concept for miniaturized sample preparation. In addition to improved extraction kinetics, extraction rates were strongly compound dependent in EMI, opening the possibility to control the extraction selectivity by the extraction time.  相似文献   

15.
本文分别用亚甲基和甾体雌二醇刚性链将吲哚与9,10-二甲氧基蒽连接起来,合成了两个分子内能量转移体系,研究了分子內吲哚的激发能向9,10-二甲氧基蒽的传递过程与距离及溶剂环境的关系;发现在两个体系中激发吲哚都可以发生从吲哚到9,10-二甲氧基蒽的单重态-单重态能量转移,在远距离的条件下,能量转移按偶极子-偶极子共振机制进行,由实验结果,根据Forster公式计算得到的给体与受体之间的距离与用分子模型测量得到的距离是一样的,并研究了溶剂极性对能量转移过程的影响。  相似文献   

16.
Abstract. The efficiency of singlet-singlet energy transfer was studied in bilayer lipid membrane vesicles (liposomes) for the following donor-acceptor systems: (1) p -terphenyl (TP) and diphenyloctatetraene (DPO); (2) DPO and chlorophyll a (Chl a ); and (3) β-carotene and Chl a. The energy transfer efficiency φDA was measured by sensitized fluorescence of the acceptor. Fractional quenching of the donor φQ was found from the donor fluorescence in absence and presence of the acceptor. For TP-DPO and for DPO-Chl a , the transfer efficiency increased with increasing acceptor concentration but was essentially independent of the donor concentration. No energy transfer from β-carotene to Chl a could be detected. In liposomes, φDA differed only slightly from φQ at all donor and acceptor concentrations, thus demonstrating the absence of any appreciable energy losses. For solutions of the same donor-acceptor pairs in cyclohexane φQ was considerably larger than φDA. The difference represents energy lost, principally by internal conversion, due to collisional quenching. The principal function of the lipid membrane appears to be the suppression of such losses. In addition, the rate of energy transfer in lipid membranes is about double that in solutions (at the same intermolecular distance) due to more favorable orientation.  相似文献   

17.
18.
Electronic excitation energy transfer has been studied by single molecule spectroscopy in donor/acceptor dyads composed of a perylenediimide donor and a terrylenediimide acceptor linked by oligo(phenylene) bridges of two different lengths. For the shorter bridge (three phenylene units) energy is transferred almost quantitatively from the donor to the acceptor, while for the longer bridge (seven phenylene units) energy transfer is less efficient as indicated by the occurrence of donor and acceptor emission. To determine energy transfer rates and efficiencies at the single molecule level, several methods have been employed. These comprise time-correlated single photon counting techniques at room temperature and optical linewidth measurements at low temperature (1.4 K). For both types of measurement we obtain broad distributions of the rate constants of energy transfer. These distributions are simulated in the framework of Forster theory by properly taking into account static disorder and the flexibility of the dyads, as both effects can substantially contribute to the distributions of energy transfer times. The rate constants of energy transfer obtained from the calculated distributions are smaller on average than those extracted from the experimental distributions, whereby the discrepancy is larger for the shorter bridge. Furthermore, by plotting the experimentally determined transfer rates against the individual spectral overlaps, approximately linear dependencies are found being indicative of a Forster-type contribution to the energy transfer. For a given single molecule such a linear dependence could be followed by spectral diffusion induced fluctuations of the spectral overlap. The discrepancies between measured energy transfer rates and rates calculated by Forster theory are briefly discussed in light of recent results of quantum chemical calculations, which indicate that a bridge-mediated contribution is mainly responsible for the deviations from Forster theory. The availability of the inhomogeneous distributions of donor and acceptor electronic transition frequencies allows for comparing the energy transfer process at liquid helium and room temperature for the same set of molecules via simple simulations. It is found that on average the energy transfer is by a factor of approximately 3 faster at room temperature, which is due to an increase of spectral overlap.  相似文献   

19.
The mechanism for triplet energy transfer from the green-emitting fac-tris[2-(4'-tert-butylphenyl)pyridinato]iridium (Ir(tBu-ppy)3) complex to the red-emitting bis[2-(2'-benzothienyl)pyridinato-N,C3')(acetylacetonato)iridium (Ir(btp)2(acac)) phosphor has been investigated using steady-state and time-resolved photoluminescence spectroscopy. [2,2';5,'2' ']Terthiophene (3T) was also used as triplet energy acceptor to differentiate between the two common mechanisms for energy transfer, i.e., the direct exchange of electrons (Dexter transfer) or the coupling of transition dipoles (F?rster transfer). Unlike Ir(btp)2(acac), 3T can only be active in Dexter energy transfer because it has a negligible ground state absorption to the 3(pi-pi*) state. The experiments demonstrate that in semidilute solution, the 3MLCT state of Ir(tBu-ppy)3 can transfer its triplet energy to the lower-lying 3(pi-pi*) states of both Ir(btp)2(acac) and 3T. For both acceptors, this transfer occurs via a diffusion-controlled reaction with a common rate constant (ken = 3.8 x 10(9) L mol-1 s-1). In a solid-state polymer matrix, the two acceptors, however, show entirely different behavior. The 3MLCT phosphorescence of Ir(tBu-ppy)3 is strongly quenched by Ir(btp)2(acac) but not by 3T. This reveals that under conditions where molecular diffusion is inhibited, triplet energy transfer only occurs via the F?rster mechanism, provided that the transition dipole moments involved on energy donor and acceptor are not negligible. With the use of the F?rster radius for triplet energy transfer from Ir(tBu-ppy)3 to Ir(btp)2(acac) of R0 = 3.02 nm, the experimentally observed quenching is found to agree quantitatively with a model for F?rster energy transfer that assumes a random distribution of acceptors in a rigid matrix.  相似文献   

20.
Energy transfer studies have been made in a terbium-erbium coactivated calibo-glass system at room temperature and at liquid-air temperature. A study of the emission and decay of 5D4 level of Tb3+ has been made by varying the acceptor (Er3+) concentration. Probabilities and efficiencies of energy transfer as well as donor-acceptor distances have been calculated. At low acceptor concentration the decay of the donor (Tb3+) emission has been found to be diffusion limited. At high acceptor concentration the mechanism governing the transfer is found to be dipole-dipole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号