首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electron ionization of helium droplets doped with methane clusters is investigated for the first time using high-resolution mass spectrometry. The dominant ion products ejected into the gas phase are the unprotonated (CH(4))(n)(+) cluster ions along with the protonated ions, CH(5)(+)(CH(4))(n-1). The mass spectra show clear evidence for magic numbers, which are broadly consistent with icosahedral shell closings. However, unusual features were observed, including different magic numbers for CH(5)(+)(CH(4))(n-1) (n=55, 148) when compared to (CH(4))(n)(+) (n=54, 147). Possible interpretations for some of these differences are proposed. Products of the type [C(2)H(x)(CH(4))(n)](+), which result from ion-molecule chemistry, are also observed and these too show clear magic number features. Finally, we report the first observation of (CH(4))(n)(2+) dications from methane clusters. The threshold for dication survival occurs at n≥70 and is in good agreement with a liquid droplet model for fission of multiply charged ions. Furthermore, we present evidence showing that these dications are formed by an unusual two-step mechanism which is initiated by charge transfer to generate a monocation and is then followed by Penning ionization to generate a dication.  相似文献   

2.
High resolution IR spectra of aniline, styrene, and 1,1-diphenylethylene cations embedded in superfluid helium nanodroplets have been recorded in the 300-1700 cm(-1) range using a free-electron laser as radiation source. Comparison of the spectra with available gas phase data reveals that the helium environment induces no significant matrix shift nor leads to an observable line broadening of the resonances. In addition, the IR spectra have provided new and improved vibrational transition frequencies for the cations investigated, as well as for neutral aniline and styrene. Indications have been found that the ions desolvate from the droplets after excitation by a non-evaporative process in which they are ejected from the helium droplets. The kinetic energy of the ejected ions is found to be ion specific and to depend only weakly on the excitation energy.  相似文献   

3.
Electron impact ionization of helium nanodroplets containing a dopant, M, can lead to the detection of both M(+) and helium-solvated cations of the type M(+)·He(n) in the gas phase. The observation of helium-doped ions, He(n)M(+), has the potential to provide information on the aftermath of the charge transfer process that leads to ion production from the helium droplet. Here we report on helium attachment to the ions from four common diatomic dopants, M = N(2), O(2), CO, and NO. For experiments carried out with droplets with an average size of 7500 helium atoms, the monomer cations show little tendency to attach and retain helium atoms on their journey out of the droplet. By way of contrast, the corresponding cluster cations, M(n)(+), where n ≥ 2, all show a clear affinity for helium and form He(m)M(n)(+) cluster ions. The stark difference between the monomer and cluster ions is attributed to more effective cooling of the latter in the aftermath of the ionization event.  相似文献   

4.
A new method for stable and continuous doping of superfluid helium nanodroplets (He(N)) with high-melting elements such as refractory metals is presented. The method exploits the advantages of electron bombardment heating and avoids stray fields induced by high currents or high frequency fields. It is thus especially suitable for magnetic studies of atoms and clusters in He(N). The source is characterized by means of mass spectroscopic investigations of He(N) doped with chromium atoms and clusters. Source temperatures of up to (1650 ± 50) °C were reached and Cr clusters up to Cr(9) could be formed in He(N).  相似文献   

5.
Excitation spectra up to the ionization threshold are reported for barium atoms located on the surface of helium nanodroplets. For states with low principal quantum number, the resonances are substantially broadened and shifted towards higher energy with respect to the gas phase. This has been attributed to the repulsive interaction of the excited atom with the helium at the Franck-Condon region. In contrast, for states with high principal quantum number the resonances are narrower and shifted towards lower energies. Photoelectron and ZEKE spectroscopy reveal that the redshift results from a lowering of the ionization threshold due to polarization of the helium by the barium ionic core. As a result of the repulsive interaction with the helium, excited barium atoms desorb from the surface of the droplets. Only when excited to the 6s6p (1)P(1) state, which reveals an attractive interaction with the helium, the atoms remain attached to the droplets.  相似文献   

6.
The infrared spectroscopy of molecules, complexes, and molecular aggregates dissolved in superfluid helium clusters, commonly called HElium NanoDroplet Isolation (HENDI) spectroscopy, is an established, powerful experimental technique for extracting high resolution ro-vibrational spectra at ultra-low temperatures. Realistic quantum simulations of such systems, in particular in cases where the solute is undergoing a chemical reaction, require accurate solute-helium potentials which are also simple enough to be efficiently evaluated over the vast number of steps required in typical Monte Carlo or molecular dynamics sampling. This precludes using global potential energy surfaces as often parameterized for small complexes in the realm of high-resolution spectroscopic investigations that, in view of the computational effort imposed, are focused on the intermolecular interaction of rigid molecules with helium. Simple Lennard-Jones-like pair potentials, on the other hand, fall short in providing the required flexibility and accuracy in order to account for chemical reactions of the solute molecule. Here, a general scheme of constructing sufficiently accurate site-site potentials for use in typical quantum simulations is presented. This scheme employs atom-based grids, accounts for local and global minima, and is applied to the special case of a HCl(H(2)O)(4) cluster solvated by helium. As a first step, accurate interaction energies of a helium atom with a set of representative configurations sampled from a trajectory following the dissociation of the HCl(H(2)O)(4) cluster were computed using an efficient combination of density functional theory and symmetry-adapted perturbation theory, i.e. the DFT-SAPT approach. For each of the sampled cluster configurations, a helium atom was placed at several hundred positions distributed in space, leading to an overall number of about 400,000 such quantum chemical calculations. The resulting total interaction energies, decomposed into several energetic contributions, served to fit a site-site potential, where the sites are located at the atomic positions and, additionally, pseudo-sites are distributed along the lines joining pairs of atom sites within the molecular cluster. This approach ensures that this solute-helium potential is able to describe both undissociated molecular and dissociated (zwitter-) ionic configurations, as well as the interconnecting reaction pathway without re-adjusting partial charges or other parameters depending on the particular configuration. Test calculations of the larger HCl(H(2)O)(5) cluster interacting with helium demonstrate the transferability of the derived site-site potential. This specific potential can be readily used in quantum simulations of such HCl/water clusters in bulk helium or helium nanodroplets, whereas the underlying construction procedure can be generalized to other molecular solutes in other atomic solvents such as those encountered in rare gas matrix isolation spectroscopy.  相似文献   

7.
One- and two-photon excitation spectra of sodium atoms on the surface of helium droplets are reported. The spectra are recorded by monitoring the photoionization yield of desorbed atoms as function of excitation frequency. The excitation spectra involving states with principal quantum number up to n = 6 can be reproduced by a pseudodiatomic model where the helium droplet is treated as a single atom. For the lowest excited states of sodium, the effective interaction potentials for this system can be approximated by the sum of NaHe pair potentials. For the higher excited states, the interaction of the sodium valence electron with the helium induces significant configuration mixing, leading to a failure of this approach. For these states, effective interaction potentials based on a perturbative treatment of the interactions between the valence electron, the alkali positive core, and the helium, as described in detail in the accompanying publication, yield excellent agreement with experiment.  相似文献   

8.
Helium nanodroplet isolation and a tunable quantum cascade laser are used to probe the fundamental CO stretch bands of aluminum carbonyl complexes, Al-(CO)(n) (n ≤ 5). The droplets are doped with single aluminum atoms via the resistive heating of an aluminum wetted tantalum wire. The downstream sequential pick-up of CO molecules leads to the rapid formation and cooling of Al-(CO)(n) clusters within the droplets. Near 1900 cm(-1), rotational fine structure is resolved in bands that are assigned to the CO stretch of a linear (2)Π(1/2) Al-CO species and the asymmetric and symmetric CO stretch vibrations of a planar C(2v) Al-(CO)(2) complex in a (2)B(1) electronic state. Bands corresponding to clusters with n ≥ 3 lack resolved rotational fine structure; nevertheless, the small frequency shifts from the n = 2 bands indicate that these clusters consist of an Al-(CO)(2) core with additional CO molecules attached via van der Waals interactions. A second n = 2 band is observed near the CO stretch of Al-CO, indicating a local minimum on the n = 2 potential consisting of an "unreacted" (Al-CO)-CO cluster. The line width of this band is ~0.3 cm(-1), which is about 30 times broader than the transitions within the Al-CO band. The additional broadening is consistent with a homogeneous mechanism corresponding to a rapid vibrational excitation induced reaction within the (Al-CO)-CO cluster to form the covalently bonded Al-(CO)(2) complex. Ab initio CCSD(T) calculations and natural bond orbital (NBO) analyses are carried out to investigate the nature of the bonding in the n = 1, 2 complexes. The NBO calculations show that both π-donation (from the occupied aluminum p orbital into a π* antibonding CO orbital) and σ-donation (from CO into the empty aluminum p orbitals) play a significant role in the bonding, analogous to transition-metal carbonyl complexes. The large red shift observed for the CO stretch vibrations is consistent with this bonding analysis.  相似文献   

9.
Photoionization and photofragmentation of SF6 in helium nanodroplets   总被引:1,自引:0,他引:1  
The photoionization of He droplets doped with SF6 was investigated using tunable vacuum ultraviolet (VUV) synchrotron radiation from the Advanced Light Source (ALS). The resulting ionization and photofragmentation dynamics were characterized using time-of-flight mass spectrometry combined with photofragment and photoelectron imaging. Results are compared to those of gas-phase SF6 molecules. We find dissociative photoionization to SF5+ to be the dominant channel, in agreement with previous results. Key new findings are that (a) the photoelectron spectrum of the SF6 in the droplet is similar but not identical to that of the gas-phase species, (b) the SF5+ photofragment velocity distribution is considerably slower upon droplet photoionization, and (c) fragmentation to SF4+ and SF3+ is much less than in the photoionization of bare SF6. From these measurements we obtain new insights into the mechanism of SF6 photoionization within the droplet and the cooling of the hot photofragment ions produced by dissociative photoionization.  相似文献   

10.
11.
Rotationally resolved infrared spectra are reported for the asymmetric C-H stretching fundamental bands of C(2)H(4) in helium nanodroplets, as well as two weak combination bands. The J=2 rotor levels are strongly shifted from the energies estimated from a rigid rotor calculation and can be accounted for with two centrifugal distortion constants. The excited states of the three bands with B(3u) symmetry are strongly coupled in the gas phase and exhibit lifetimes >100 ps in helium, with the upper member of the polyad exhibiting the shortest lifetime. In contrast, the nu(9) band (B(2u) symmetry) exhibits very broad, homogeneously broadened line profiles (full width at half maximum approximately 0.5 cm(-1)) corresponding to an excited state lifetime of approximately 10 ps. This short lifetime is presumed to be due to an efficient, solvent mediated vibration-to-vibration relaxation process. In addition, the absence of transitions to the 2(21) and 2(20) rotor levels in the nu(9) band suggests they form rotational resonances with the elementary modes of helium, resulting in very short excited state lifetimes of less than 2 ps.  相似文献   

12.
Reported here is a study of the effects of liquid helium cooling on the fragmentation of ions formed by electron impact mass ionization. The molecules of interest are picked up by the helium nanodroplets as they pass through a low pressure oven. Electron impact ionization of a helium atom in the droplet is followed by resonant charge transfer to neighboring helium atoms. When the charge is transferred to the target molecule, the difference in the ionization potentials between helium and the molecule results in the formation of a vibrationally hot ion. In isolation, the hot parent ion would undergo subsequent fragmentation. On the other hand, if the cooling due to the helium is fast enough, the parent ion will be actively cooled before fragmentation occurs. The target molecule used in the present study is triphenylmethanol (TPM), an important species in synthetic chemistry, used to sterically protect hydroxyl groups. Threshold PhotoElectron PhotoIon COincidence (TPEPICO) experiments are also reported for gas-phase TPM to help quantify the ion energetics resulting from the cooling effects of the helium droplets.  相似文献   

13.
Clusters of tetracene molecules with different numbers of attached (Ar)(N), (Ne)(N) and (H(2))(N) particles (N = 1-2000) are assembled inside superfluid He nanodroplets and studied via laser-induced fluorescence. The frequency shift of the fluorescence spectrum of the tetracene molecules is studied as a function of cluster size and pickup order of tetracene and cluster species. For (Ar)(N) and (Ne)(N) clusters, our results indicate that the tetracene molecules reside inside the clusters when tetracene is captured by the He nanodroplet before the cluster species; conversely, the tetracene molecules stay on the surface of the clusters when tetracene is captured after the cluster species. In the case of (H(2))(N) clusters, however, tetracene molecules reside inside the (H(2))(N) clusters irrespective of the pickup order. We conclude that (Ar)(N) and (Ne)(N) clusters are rigid at T = 0.38 K, while (H(2))(N) clusters of up to N = 2000 remain fluxional at the same temperature. The results may also indicate the occurrence of heterogeneous nucleation of the (H(2))(N) clusters, which is induced by the interaction with tetracene chromophore molecules.  相似文献   

14.
15.
A new method for the production of cold free clusters is presented. A beam of large rare gas clusters is passed through a low pressure atomic gas. The gas atoms are picked up by the rare gas clusters whereby they condense. A complete evaporation of rare gas atoms from the newly formed clusters then follows once the number of captured particles becomes sufficiently large. The method is demonstrated for Xe clusters with size up to 500 atoms per cluster but it should work for most materials, including the refractory materials.  相似文献   

16.
We report spectra of various benzene isotopomers and their dimers in helium nanodroplets in the region of the first Herzberg-Teller allowed vibronic transition 6(0)(1) (1)B(2u)<--(1)A(1g) (the A(0) (0) transition) at approximately 260 nm. Excitation spectra have been recorded using both beam depletion detection and laser-induced fluorescence. Unlike for many larger aromatic molecules, the monomer spectra consist of a single "zero-phonon" line, blueshifted by approximately 30 cm(-1) from the gas phase position. Rotational band simulations show that the moments of inertia of C(6)H(6) in the nanodroplets are at least six-times larger than in the gas phase. The dimer spectra present the same vibronic fine structure (though modestly compressed) as previously observed in the gas phase. The fluorescence lifetime and quantum yield of the dimer are found to be equal to those of the monomer, implying substantial inhibition of excimer formation in the dimer in helium.  相似文献   

17.
We present simulation results on the effect of a helium nanodroplet environment on the fragmentation dynamics of embedded molecular systems. The helium atoms are treated explicitly, with zero-point effects taken into account through an effective helium-helium interaction potential. The ionized neon tetramer is used as a model molecular system because, like all the small rare-gas clusters, it fragments extensively upon ionization. All the nonadiabatic effects between electronic states of the ionized neon cluster are taken into account. The results reveal a predominance of Ne2+ and HepNe2+ fragments and the absence of bare Ne+ fragments, in agreement with available experimental data. The neutral monomer fragments exhibit a rather wide kinetic energy distribution that can be fitted to the sum of two Boltzmann distributions, one with a low kinetic energy and the other with a higher kinetic energy. This indicates that cooling by helium atom evaporation is more efficient than was believed so far, as suggested by recent experimental results. Purely classical calculations are shown to strongly overestimate the amount of cage effect (cooling), clearly indicating the need to take into account zero-point effects.  相似文献   

18.
Large liquid helium clusters (Hen, n ≈ 104) produced in a supersonic jet are doped with alkali atoms (Li, Na, K) and characterized by means of laser induced fluorescence. Each cluster contains, on average, less than one dopant atom. Both excitation and emission spectra have been recorded. The observed excitation spectra are analyzed, calculating the transitions within an approach based on the hypothesis that the chromophores are trapped in a dimple on the cluster’s surface as predicted by the theoretical calculations of Ancilotto et al. [9]. The results of the model calculations are in good qualitative agreement with the experimental findings. In spite of the very weak binding energy (a few cm?1), some of the excited atoms remain bound to the surface, provided the excitation occurs at frequencies not too far from the alkali’s gas phase absorptions. These bound-bound excitations produce very broad, red shifted emission spectra. At other, blue shifted frequencies, the excited atoms desorb from the cluster’s surface, giving rise to unshifted, free atom, emission spectra. The heavier alkali metals (Na, K) show, compared to the calculations, an additional broadening which is attributed to surface excitations on the helium droplet.  相似文献   

19.
Presented here are the results of the joint theoretical and infrared laser spectroscopic study of the hydrogen chloride monomer and clusters, (HCl)n (n=1-6), isolated in helium nanodroplets. The H-Cl stretching bands of the dimers and trimers show a large increase in the band intensity as well as low frequency shift with respect to that in a single HCl molecule. The average frequency of the bands for clusters larger than trimers remains approximately constant, which correlates well with the onset of the folded cyclic structure and the full development of the hydrogen bonding in larger clusters. The structure of the clusters was found to be cyclic planar for trimers, slightly twisted square planar for tetramers, envelope-like for pentamers, and folded pseudobipyramidal for hexamers. This change in structure upon an increase of the cluster size can be seen as an early stage of the structural transition to the HCl solid, which consists of zigzag chains of HCl molecules. Spectra of large clusters of about 500 molecules consist of a single band, which encompasses the same frequency range of trimers through hexamers.  相似文献   

20.
Highly excited states of rubidium (Rb) atoms attached to helium (He) nanodroplets are studied by two-photon ionization spectroscopy in combination with electron and ion imaging. We find high yields of RbHe and RbHe(2) exciplexes when exciting to the 4D and 6P bands but not at the 6S band, in accord with a direct formation of exciplexes in binding RbHe pair potentials. Photoion spectra and angular distributions are in good agreement with a pseudodiatomic model for the RbHe(N) complex. Repulsive interactions in the excited states entail fast dissociation followed by ionization of free Rb atoms as well as of RbHe and RbHe(2) exciplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号