首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical percolation threshold of different polyethylene/carbon nanotube nanocomposites was studied as a function of chain structure, matrix viscosity, and the effect of compatibilizer. The lower the viscosity of the matrix the lower is the percolation threshold, regardless of the chain architecture and degree of crystallization. To improve dispersion a series of acrylic acid copolymer are introduced into the system. The highest concentration of acid co‐monomer that maintain miscibility with the polyethylene matrix is 5 wt.%. The compatibilizer in its pristine form does not have a significant effect on dispersion and on volume resistivity. When the acidic copolymer was modified with aminomethylpyridine, in order to facilitate π–π interaction with the nanotubes, a 4‐decade reduction was recorder for the high viscosity matrices at 10 wt.% compatibilizer loading. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Doping a polymer matrix with a minute amount of graphene (0.05–0.25%) had significant effects on the grating formation kinetics and electro‐optical performance of a holographic polymer‐dispersed liquid crystal. Low graphene contents (≤0.1%) reduced the viscosity and induced rapid diffusion, curing, grating formation, and high diffraction efficiency with a diffraction overshoot of 0.05%. Conversely, high graphene contents increased the compound viscosity, and the entire process proceeded slowly. Graphene increased the polymer conductivity and local electric field, reduced the operating voltage from 65 to 25–50 V, and increased the contrast ratio from 7 to 8–23 with a concomitant decrease in rise time. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Nanocomposites based on poly(ethylene terephthalate) (PET) and expanded graphite (EG) have been prepared by in situ polymerization. Morphology of the nanocomposites has been examined by electronic microscopy. The relationship between the preparation method, morphology, and electrical conductivity was studied. Electronic microscopy images reveal that the nanocomposites exhibit well dispersed graphene platelets. The incorporation of EG to the PET results in a sharp insulator‐to‐conductor transition with a percolation threshold (?c) as low as 0.05 wt %. An electrical conductivity of 10?3 S/cm was achieved for 0.4 wt % of EG. The low percolation threshold and relatively high electrical conductivity are attributed to the high aspect ratio, large surface area, and uniform dispersion of the EG sheets in PET matrix. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

4.
Conventional electrorheological (ER) fluids consist of electrically polarizable particles dispersed in an inert insulating liquid. They are characterized by a development of a yield stress upon application of an external electric field. They resemble Bingham fluids with yield stress value depending on electric field. A viscosity increase in the presence of an electric field has been also found in homogeneous solutions of liquid crystalline polymers with no yield stress observed. In this study these two types of fluids and combined dispersions of the solid particles in the liquid crystalline matrix were investigated. A lyotropic liquid crystalline polymer—poly(n‐hexyl isocyanate) (PHIC)—dissolved in xylene was chosen as the active matrix. The dispersed solid phase was comprised of two kinds of polymers: pyrolyzed polyacrylonitryle (PAN) showing electron conductivity, and PAN doped with two salts (KSCN, NaSCN), resulting in ionic conductivity. The rheological measurements under an electric field were performed. The pristine xylene solution of PHIC was characterized first as well as the 15% m/m dispersions of PAN powders in silicone oil. Then the dispersions in the liquid crystalline matrix were investigated showing a strong ER effect whose magnitude was considerably enhanced in comparison to both ER active components measured separately. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A systematic investigation into the surface properties of siloxane rubber/carbon black (CB) nanocomposites has been performed, using an automated scanning probe microscope. In this way the influence of CB concentration and curing rate of the siloxane rubber matrix on roughness and conductivity of the composites was studied. Decreasing the curing rate while keeping the CB concentration resulted in a decrease in both roughness and surface conductivity, which can be explained by an additional siloxane‐rubber layer formed during curing.

  相似文献   


6.
A new approach of mimicking the selective localization mechanism of conductive filler into one phase of immiscible polymer blend system is proposed here, where a moderate fine of polymethylmethacrylate (PMMA) powder is prepared and used as the spacer in the carbon black (CB) filled epoxy adhesives system that can be applied at room temperature. The main purpose of PMMA‐spacer is to promote the formation of conductive networks via aiding the 3D self‐assembly of CB filler, selectively in the continuous phase of epoxy. PMMA‐spacer content ranged from 10, 20, 30, 40, and 50 vol.% were investigated under electrical, mechanical, and thermal properties for both unfilled and 15 vol.% CB filled system. With the incorporation of 10 vol.% PMMA‐spacer, the filled system shows promising improvement in electrical conductivity, with three order of magnitude increment at 15 vol.% CB loading. Toughening mechanism of epoxy was observed, where crack deflection upon the PMMA‐spacer is observed under scanning electron microscopy characterization and agreed by fracture toughness calculation. Thermal stability and coefficient of thermal expansion were improved at the minimum addition of PMMA‐spacer content, at 10 vol.%, while a small reduction in flexural strength is observed because of the poor interface interaction between the PMMA‐spacer and epoxy matrix. Interestingly, a limited interaction between the PMMA‐spacer with epoxy at the curing temperature of 100°C is observed, indicating the solubility of PMMA‐spacer in epoxy before crosslinking process occurred. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Carbon black (CB)-filled immisicible thermoplastic/thermosetting polymer blends consisting of polypropylene (PP) and Novolac resin were reported in this paper. The PP/Novolac/CB blends with varied compositions and different processing sequences were prepared by melt-mixing method. The CB distribution, conductive mechanism and the relationship between morphology and electrical properties of the PP/Novolac/CB blends were investigated. Scanning electron microscopy (SEM), optical microscopy and extraction experiment results showed that in PP/Novolac blends CB particles preferentially localized in the Novolac phase, indicating CB has a good affinity with Novolac resin. The incorporation of CB changed the spherical particles of the dispersed Novolac phase into elongated structure. With increasing Novolac content, the elongation deformation of Novolac phase became more obvious and eventually the blends developed into co-continuous structure, which form double percolation and decrease the percolation threshold. When CB was initially blended with PP and followed by the addition of Novolac resin, the partial migration of CB from PP to the Novolac phase was possibly occurred. The addition of Novolac to PP evidently increases the storage modulus G′, loss modulus G″ and complex viscosity η. The addition of CB to PP/Novolac blends further increase η, and it increases with increasing CB loading, which was related to the change of composite morphology.  相似文献   

8.
The present work concerns with the investigation of the effect of dispersion of Silica (SiO2) nanoparticles (NPs) in host ferroelectric liquid crystal (FLC) KCFLC10S on the dielectric and electro-optical properties and ultraviolet-visible (UV-VIS) absorption spectra of the pristine and dispersed systems. We have found that the dispersion of SiO2 NPs in the host FLC strongly influences the various properties of dispersed systems. No evidence of aggregates and clumps in the dispersed system has been observed. Due to SiO2 NPs dispersion, a rapid decrease in dielectric permittivity ε’, increase in conductivity σ with frequency, increase in spontaneous polarisation Ps and decrease in switching time with bias voltage have been observed. Based on the absorption spectra, we have also made an attempt to link the electro-optical and dielectric response with the mechanism of FLC–NPs interactions.  相似文献   

9.
We describe dielectric spectroscopy measurements on dispersions of two thermotropic liquid crystals (5CB and 8CB) in a poly(dimethylsiloxane) matrix. 5CB exhibits nematic and isotropic phases, while 8CB exhibits smectic, nematic, and isotropic phases. The spectra of the dispersions exhibit a temperature-dependent dielectric relaxation in the interval from 100 to 1000 Hz, with relaxation times that depend strongly on whether the dispersed phase is isotropic, nematic, or smectic. The dielectric relaxation times also depend on the viscosity of the matrix fluid. These results suggest a coupling between the electric field and the mechanics of the interface that affects the spectrum of the dispersed phase and shifts the Maxwell-Wagner interfacial polarization peak.  相似文献   

10.
Electrical properties of multi-walled carbon nanotubes (MWNTs)/hybrid-glass nanocomposites prepared by the fast-sol–gel reaction were investigated in light of percolation theory. A good correlation was found between the experimental results and the theory. We obtained a percolation threshold ? c  = 0.22 wt%, and a critical exponent of t = 1.73. These values are reported for the first time for a silica-based system. The highest conductivity measured on the MWNT/hybrid-glass nanocomposites was σ ≈ 10?3(Ω cm)?1 for 2 wt% carbon nanotube (CNT) loading. The electrical conductivity was at least 12 orders of magnitude higher than that of pure silica. Electrostatic force microscopy and conductive-mode atomic force microscopy studies demonstrated conductivity at the micro-level, which was attributed to the CNT dispersed in the matrix. It appears that the dispersion in our MWNT/hybrid-glass system yields a particularly low percolation threshold compared with that of a MWNT/silica-glass system. Materials with electrical conductivities described in this work can be exploited for anti-static coating.  相似文献   

11.
A methodology for improving antistatic property of polyetherimide (PEI) composite using polyaniline (PANI) grafted multi‐walled carbon nanotubes (MWNTs) as conductive medium was proposed. First, the MWNTs grafted with PANI (PANI‐g‐MWNTs) were prepared by in‐situ polymerization in an emulsion system. Subsequently, PANI‐g‐MWNTs were blended with PEI using N‐methyl‐2‐pyrrolidone as solvent. After removing the solvent, the PEI/PANI‐g‐MWNT composite was prepared. As assisted conductive medium, the grafted PANI molecular chains on MWNT surface were dispersed in the PEI matrix to decrease the percolation value of the antistatic composites. The structure and morphology of PANI‐g‐MWNTs were characterized by Fourier transform infrared spectroscopy, transmission electron microscope, thermogravimetric analysis, and X‐ray powder diffraction, respectively. The dispersion of PANI‐g‐MWNTs in PEI matrix was studied by scanning electron microscope. The electrical performance was characterized by highly resistant meter. The volume resistivity of the conductivity percolation threshold was 1.781 × 10?8 S/cm when the loading of PANI‐g‐MWNTs was 1.0 wt%. The conductivity of PANI‐g‐MWNTs/PEI composites was found to be higher than that of pristine MWNTs/PEI composite. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
研究了纤维状导电材料不锈钢纤维(SSF)填充高密度聚乙烯(HDPE)导电复合体系的导电渗流与流变渗流行为之间的关系,并与颗粒状导电颗粒炭黑(CB)/HDPE导电复合体系进行了比较.发现当SSF含量极低(0.3vol%)时,SSF/HDPE体系即发生导电渗流现象,且导电渗流转变区域极窄;而仅当SSF含量达到4.8vol%时,该复合体系才表现出流变渗流现象,这一结果与CB/HDPE体系及纳米级导电纤维填充体系截然不同.此外,通过正温度系数效应的研究发现SSF形成的导电通路稳定性高于CB/HDPE体系.我们认为,SSF/HDPE体系呈现的这些特点均与SSF较大的直径及长径比且其导电通路及流变渗流网络的形成机理不同有关.  相似文献   

13.
Nonmodified multiwalled carbon nanotubes (MWCNTs)/sulfonated polyoxadiazole (sPOD) nanocomposites are successfully prepared by a facile solution route. The pristine MWCNTs are dispersed in a sPOD solution, and the mixtures are fabricated into thin films by solution casting. The homogeneous dispersion of nanotubes in the composites is confirmed by transmission electron microscopy. The mechanical properties, thermal stability, and electrical conductivity are investigated. Tensile strength, elongation at break, and tensile energy to break are shown to increase by more than 28, 45, and 73%, respectively, by incorporating up to 1.0 wt % pristine MWCNTs. The experimental values for sPOD/MWCNTs composite stiffness are compared with Halpin‐Tsai and modified Halpin‐Tsai predictions. The storage modulus is found to increase up to 10% at low CNT loading. The composite films, which have an outstanding thermal stability, show an increase of up to 57 °C in the initial degradation temperature. The addition of 1.0 wt % MWCNTs increases the electrical conductivity of the sPOD matrix by two orders of magnitude. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
The dispersion of multiwalled carbon nanotubes (CNTs) in an ethylene propylene rubber matrix was investigated using an internal mixer. Poly(ethylene‐co‐polyvinyl acetate) (EVA) statistic copolymer was used as a dispersing agent. The effects of the concentration of the dispersing agent and the matrix viscosity on the quality of the dispersion of 1 wt % of CNTs were studied by using microscopy and rheology in the melt state. It was demonstrated that the dispersion is governed principally by the viscosity of the matrix. As expected, better dispersion was observed when the matrix exhibited a lower viscosity. The influence of the filler content on the rheological and electrical properties is presented. A Cross model with a yield stress is proposed to describe the rheological behavior of these materials, which exhibit a viscoelastic solid behavior from 1 wt % CNT content. Electrical measurement data indicate that the electrical percolation threshold was 2.9 wt %. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1597–1604, 2011  相似文献   

15.
The effect the viscosity of a dispersion medium of a polymethylsiloxane fluid (PMS) with a kinematic viscosity over a wide range of values from 5 to 300 cSt has on the electrorheological properties of suspensions based on nanosized titanium dioxide obtained via the sol-gel method is investigated. The investigations are conducted in a wide range of concentrations of suspensions: from 30 to 60 wt % (from 15 to 38 vol %) of the dispersed phase. The role the dispersion medium in two-phase disperse systems plays in the formation of structures of dispersed phase in the presence of an electric field is determined from the dependence of yield points of TiO2 in PMS with different viscosities on the applied electric field strength.  相似文献   

16.
Polypropylene random copolymer nanocomposites having 0.2–7.0 vol% multi-walled carbon nanotubes (MWCNTs) were prepared via melt processing. Transmission electron microscopy (TEM) was employed to determine the nano scale dispersion of carbon nanotubes. Linear viscoelastic behavior of these nanocomposites was investigated using parallel plate rheometry. Incorporation of carbon nanotubes in the polymer matrix resulted in higher complex viscosity (η*), storage (G′) and loss modulus (G″) as compared to neat polymer, especially in the low-frequency region, suggesting a change from liquid to solid-like behavior in the nanocomposites. By plotting storage modulus vs. carbon nanotube loading and fitting with a power law function, the rheological percolation threshold in these nanocomposites was observed at a loading of ∼0.27 vol% of MWCNTs. However, electrical percolation threshold was reported at ∼0.19 vol% of MWCNTs loading. The difference in the percolation thresholds is understood in terms of nanotube connectivity with nanotubes and polymer chain required for electrical conductivity and rheological percolation.  相似文献   

17.
This paper is part of a comprehensive study on using selective localization of carbon black (CB) at the interface of immiscible polymer blends in order to reduce the percolation threshold concentration and enhance the conductivity of the blends. CB was successfully localized at the interface of polypropylene/polystyrene (PP/PS) blend by introducing styrene-butadiene-styrene (SBS) tri-block copolymer to the blend. In CB-PP/PS/SBS blends, CB has higher affinity for the polybutadiene (PBD) section of the SBS copolymer, whereas in CB-PP/PS blends, CB prefers the PS phase. PP/PS interface is one of the preferred locations for the SBS copolymer in the (PP/PS) blend; at which the PBD section of the SBS copolymer forms a few nanometers thick layer able to accommodate the CB nano-particles. The influence of SBS addition on the morphology and electrical properties of various PP/PS blends filled with 1 vol% CB were studied. SBS influence on the conductivity of PP/PS blends was found to be a function of the PP/PS volume ratio and SBS loading. The most dramatic increase in conductivity was found in the (60/40) and (70/30) PP/PS blends upon the addition of 5 vol% SBS. 5 vol% SBS was found to be the optimum loading for most blends. Using 10 vol% of SBS was reported to deteriorate electrical conductivity of the conductive co-continuous PP/PS blends. For all blends studied, SBS addition was found to compatibilize the blends. Finer morphologies were obtained by increasing SBS loading.  相似文献   

18.
The DC conductivity of polymer blends composed of poly(ethylene‐co‐vinyl acetate) (EVA) and high density polyethylene (HDPE), where a conductive carbon black (CB) had been preferentially blended into the HDPE, were investigated to establish the percolation characteristics. The blends exhibited reduced percolation thresholds and enhanced conductivities above that of the individually carbon filled HDPE and EVA. The percolation threshold of the EVA/HDPE/CB composites was between 3.6 and 4.2 wt % carbon black, where the volume resistivity changed by 8 orders of magnitude. This threshold is at a significantly lower carbon content than the individually filled HDPE or EVA. At a carbon black loading of 4.8 wt %, the EVA/HDPE/CB composite exhibits a volume resistivity which is approximately 14 and 11 orders of magnitude lower than the HDPE/CB and EVA/CB systems, respectively, at the same level of incorporated carbon black. The dielectric response of the ternary composites, at a temperature of 23°C and frequency of 1 kHz, exhibited an abrupt increase of ca. 252% at a carbon concentration of 4.8 wt %, suggesting that the percolation threshold is somewhat higher than the range predicted from DC conductivity measurements. Percolating composites with increasing levels of carbon black exhibit significantly greater relative permittivity and dielectric loss factors, with the composite containing 6 wt % of carbon black having a value of ϵ′ ≈ 79 and ϵ″ ≈ 14. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1899–1910, 1999  相似文献   

19.
We demonstrate micromechanical strain sensors with integrated readout based on carbon nanocones and discs (CNCs) which are aligned into a string‐like formation using an alternating electric field and studied by AC impedance spectroscopy and electromechanical methods. The CNC particles are first dispersed into a polymer matrix with a particle fraction of 0.1 vol %. This value is well below the percolation threshold (~ 2 vol %), which suppresses particle aggregation and facilitates transparency allowing the use of an UV‐curable polymer. Alignment was carried out with a 1 kHz, 4 kV/cm electric field and is a consequence of dielectrophoretic effect. It develops in minutes and makes the initially insulating, nonaligned material conductive. This is followed by UV curing of the polymer matrix, which renders a solid state device. The stretching of the aligned strings in the cured polymer leads to a reversible piezoresistive effect, and a gauge factor of about 50 is observed. This is in a sharp contrast to CNC films with particle fraction above percolation threshold (13 vol %), which are conductive but not sensitive to stretching. The strings are Ohmic in nature and moreover show higher DC conductivity (22–500 S/m) compared to identically prepared carbon black strings (1–22 S/m). © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

20.
In this work, graphene nanoplatelet (GNP) filled polymethyl methacrylate (PMMA) composites were prepared using solution method via a specially designed route and relatively high thermal conductivities of the composites were achieved at a low GNP loading. The effect of GNP content on rheological behavior, thermal and electrical conductivity of the composites was intensively investigated. Thermorheological complexity was displayed at elevated GNP loading, and the rheological percolation threshold of GNP in PMMA decreased from 7.96 wt% at 220 °C to 4.02 wt% at 260 °C according to Winter-Chambon method, suggesting that GNP was more likely to form a seepage network at higher temperature. The DMTA results showed that the increase in moduli of the composites should be ascribed to the formation of the GNP-GNP network structure. The electrical conductivity of the composites underwent a sudden jump by seven orders of magnitude, which also indicated the formation of a GNP conductive pathway in the matrix with an electrical percolation threshold of 2–4 wt%. The results of transient temperature measurement were in good consistent with the thermal conductivity versus GNP loading, which was compared with various thermal conduction models with a modified Agari model presenting an acceptable evaluation of the dispersion status of GNP in the matrix. The experimental electrical and thermal conductivities as a function of GNP content could well be interpreted by the filler network structure as observed in morphological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号