首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The development of high‐performance molecular electronics and nanotech applications requires deep understanding of atomic level structural, electronic, and magnetic properties of electrode/molecular interfaces. Recent electrochemical experiments on self‐assembled monolayers (SAMs) have identified highly practical means to generate nanoparticles and metal monolayers suspended above substrate surfaces through SAM metallizations. A rational basis why this process is even possible is not yet well‐understood. To clarify the initial stages of interface formation during SAM metallization, we used first‐principles spin‐polarized density functional theory (DFT) calculations to study Pd diffusion on top of 4‐mercaptopyridine (4MP) SAMs on Au(111). After distinguishing potential‐energy surfaces (PESs) for different spin configurations for transition metal atoms on the SAM, we find adatom diffusion is not possible over the clean 4MP–SAM surface. Pre‐adsorption of transition‐metal atoms, however, facilitates atomic diffusion that appears to explain multiple reports on experimentally observed island and monolayer formation on top of SAMs. Furthermore, these diffusions most likely occur by moving across low‐lying and intersecting PESs of different spin states, opening the possibility of magnetic control over these systems. Vertical diffusion processes were also investigated, and the electrolyte was found to play a key role in preventing metal permeation through the SAM to the substrate.  相似文献   

2.
The formation mechanism of the thermodynamically unstable calcite phase, very high Mg calcite, in biological organisms such as sea urchin or corallina algae has been an enigma for a very long time. In contrast to conventional methods such as KBr pellet Fourier Transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD), FTIR microspectroscopy (FTIRM) provides additional information about a local disorder such as an amorphous phase or the occlusion of Mg ions in the calcite lattice. In this work, we characterise for the first time systematically synthetic and biogenic Mg-containing calcium carbonate samples (especially sea urchin teeth--SUT) in detail by using two FTIRM instruments and compare these samples with KBr pellet FTIR measurements. Furthermore, we present spectra from geogenic calcite and dolomite minerals, recorded with both FTIRM systems, as well as KBr pellet FTIR spectra as references. We analyse the spectra by applying multi-peak curve fitting on the in-plane-bending (ν(4)) and out-of-plane (ν(2)) bands. Based on the obtained results we attribute the two singlet bands at ~860-865 cm(-1) and ~695-704 cm(-1) observed in the SUT FTIRM spectra to the existence of amorphous calcium carbonate (ACC), and report for the first time the existence of ACC at the mature end of SUT. In the other three studied biominerals, however, we did not find any ACC. Also, based on the FTIRM results, we observe that not only ν(4), but also ν(2) shifts to higher wavenumbers if more calcium ions are replaced by magnesium ions in the calcite lattices.  相似文献   

3.
The majority of invertebrate skeletal tissues are composed of the most stable crystalline polymorphs of CaCO(3), calcite, and/or aragonite. Here we describe a composite skeletal tissue from an ascidian in which amorphous and crystalline calcium carbonate coexist in well-defined domains separated by an organic sheath. Each biogenic mineral phase has a characteristic Mg content (5.9 and 1.7 mol %, respectively) and concentration of intramineral proteins (0.05 and 0.01 wt %, respectively). Macromolecular extracts from various biogenic amorphous calcium carbonate (ACC) skeletons are typically glycoproteins, rich in glutamic acid and hydroxyamino acids. The proteins from the crystalline calcitic phases are aspartate-rich. Macromolecules extracted from biogenic ACC induced the formation of stabilized ACC and/or inhibited crystallization of calcite in vitro. The yield of the synthetic ACC was 15-20%. The presence of Mg facilitated the stabilization of ACC: the protein content in synthetic ACC was 0.12 wt % in the absence of Mg and 0.07 wt % in the presence of Mg (the Mg content in the precipitate was 8.5 mol %). In contrast, the macromolecules extracted from the calcitic layer induced the formation of calcite crystals with modified morphology similar to that expressed by the original biogenic calcite. We suggest that specialized macromolecules and magnesium ions may cooperate in the stabilization of intrinsically unstable amorphous calcium carbonate and in the formation of complex ACC/calcite tissues in vivo.  相似文献   

4.
The biomimetic synthesis of patterned mineral thin films, based on a combination of the microcontact printing technique and a novel crystallization process called the polymer-induced liquid-precursor (PILP) process, is demonstrated. The PILP process enables the deposition of smooth and continuous calcitic mineral films (up to 1500 nm in thickness) under low-temperature and aqueous-based processing conditions. The films are formed by deposition of colloidal droplets composed of a liquid-phase mineral precursor that is induced by a polymeric process-directing agent (polyaspartate or polyacrylate salts). The droplets can be preferentially deposited onto patterned substrates templated with self-assembled monolayers (SAMs) of alkanethiolate on gold. The droplets coalesce to form an amorphous mineral film, which then transforms (solidifies and crystallizes) while retaining the shape of the patterned template, providing a means for patterning the location and morphology of two-dimensional calcite crystals. A vertical substrate experiment supports the premise that the calcite films are created by adsorption of colloidal droplets from solution, rather than heterogeneous nucleation and growth of an amorphous phase on the SAMs. Large single-crystalline domains, on the order of 50-100 microm, can be "molded" into nonequilibrium morphologies by constraining the mineral precursor to a chemically defined "compartment". Biominerals are well recognized for their elaborate nonequilibrium molded crystal morphologies, and increasing evidence suggests that many biominerals are formed from an amorphous precursor that is stabilized by polyanionic proteins. The biomimetic system examined here, which consists of a polyanionic process-directing agent in combination with a functionalized organic template, offers a practical tool for generating complex inorganic structures such as those found in biominerals.  相似文献   

5.
The preparation of self-assembled monolayers (SAMs) of organophosphonic acids on indium tin oxide (ITO) surfaces from different solvents (triethylamine, ethyl ether, tetrahydofuran (THF), pyridine, acetone, methanol, acetonitrile, dimethyl sulfoxide (DMSO), or water) has been performed with some significant differences observed. Cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and contact angle measurement demonstrated that the quality of SAMs depends critically on the choice of solvents. Higher density, more stable monolayers were formed from solvents with low dielectric constants and weak interactions with the ITO. It was concluded low dielectric solvents that were inert to the ITO gave monolayers that were more stable with a higher density of surface bound molecules because higher dielectric constant solvents and solvents that coordinate with the surface disrupted SAM formation.  相似文献   

6.
《Supramolecular Science》1996,3(1-3):103-109
Adsorption and desorption processes of self-assembled monolayers (SAMs) have been studied on an Au(111) surface by scanning tunnelling microscopy (STM), atomic force microscopy (AFM), X-ray photo-electron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). At the initial growth stage, the ordered nucleation of SAM located at the herringbone turns of the Au(111) − (22 × √3) surface reconstruction and diffusion-controlled domain formation have been imaged by STM and AFM. Details of the oxidation process in UV desorption were also investigated by XPS. In addition, the dimerization reaction during desorption was confirmed by TDS for the first time in the alkanethiol SAM system.  相似文献   

7.
Characterization of self-assembled monolayers of thiols on Au(111)   总被引:1,自引:0,他引:1  
Self-assembled monolayers (SAMs) of n-butanethiol, n-dodecanethiol and their equimolar mixture on Au(111) were prepared and characterized by ellipsometry, contact angle measurement, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Results revealed that these SAMs are oriented ultrathin films with the thickness of nanometer scale, and the SAMs were influenced by the molecular chain length, the lattice orientation and cleanliness of the substrates. The surface of the longer chain SAM is hydrophobic. The thicknesses of three SAMs of n-butanethiol, n-dodecanethiol and their mixture revealed by ellipsometry and XPS are about 0.59 - 0.67nm, 1.60- 1.69 nm and 1.23 - 1.32nm, respectively. AFM images further demonstrated that the SAM formed by the mixture has some microdomains with two different thicknesses.  相似文献   

8.
The main gel-to-liquid-crystal (LC) phase transition temperature, T(m), of the distal lipid layer in hybrid bilayer membranes (HBMs) under water was investigated using vibrational sum frequency spectroscopy (VSFS). VSFS has unique sensitivity to order/disorder transitions in the lipid acyl chains and can determine T(m) for the lipid monolayers in HBMs. We recently reported the observation that T(m) is raised and the transition width is broadened for the overlying phospholipid monolayer in HBM systems formed on densely packed crystalline self-assembled monolayers (SAMs) as compared to that of vesicles in solution. In this report, we establish that T(m) for the lipid layer of HBMs can be controlled by proper choice of the SAM underlayer. The SAM underlayer of the HBM was systematically altered by using an alkane thiol, a saturated thiolipid, a mixed SAM of a saturated lipid-pyridine disulfide, and finally a mixed SAM of an unsaturated lipid-pyridine disulfide. T(m) was measured for two different chain length saturated phosphatidylcholine lipid overlayers on these SAMs. The values obtained show that Tm of the lipid layer of HBMs is sensitive to the composition and/or packing density of molecules in the underlying SAM.  相似文献   

9.
Adsorption of water on self-assembled monolayers (SAMs) of 4-(4-mercaptophenyl)pyridine on gold at low temperatures under ultrahigh vacuum conditions is studied by synchrotron radiation X-ray photoelectron and absorption spectroscopy. Water adsorption induces a strong modification of the chemical state of the pyridine N atoms at the SAM/ice interface, indicative for strong H bonding and partial proton transfer between water molecules and pyridine moieties. Additionally, the initial molecular orientation within the SAM is changed upon formation of an adsorbed water multilayer.  相似文献   

10.
The mechanisms of formation of biogenic magnesium-rich calcite remain an enigma. Here we present ultrastructural and compositional details of ossicles from the seastar Pisaster giganteus (Echinodermata, Asteroidea). Powder X-ray diffraction, infrared spectroscopy and elemental analyses confirm that the ossicles are composed of magnesium-rich calcite, whilst also containing about 0.01 % (w/w) of soluble organic matrix (SOM) as an intracrystalline component. Amino acid analysis and N-terminal sequencing revealed that this mixture of intracrystalline macromolecules consists predominantly of glycine-rich polypeptides. In vitro calcium carbonate precipitation experiments indicate that the SOM accelerates the conversion of amorphous calcium carbonate (ACC) into its final crystalline product. From this observation and from the discovery of ACC in other closely related taxa, it is suggested that substitution of magnesium into the calcite lattice through a transient precursor phase may be a universal phenomenon prevalent across the phylum echinodermata.  相似文献   

11.
This paper reports on the structure and desorption dynamics of thin D2O ice overlayers (0.2-10 monolayers) deposited on serine- and serinephosphate- (with H+, Na+, Ca2+ counterions) terminated self-assembled monolayers (SAMs). The D2O ice overlayers are deposited on the SAMs at approximately 85 K in ultrahigh vacuum and characterized with infrared reflection absorption spectroscopy (IRAS). Reflection absorption (RA) spectra obtained at sub-monolayer D2O coverage reveal that surface modes, e.g. free dangling OD stretch, dominate on the serine SAM surface, whereas vibrational modes characteristic for bulk ice are more prominent on the serinephosphate SAMs. Temperature programmed desorption mass spectrometry (TPD-MS) and TPD-IRAS are subsequently used to investigate the energetics and the structural transitions occurring in the ice overlayer during temperature ramping. D2O ice (approximately 2.5 monolayers) on the serine SAMs undergoes a gradual change from an amorphous- to a crystalline-like phase upon increasing the substrate temperature. This transition is not as pronounced on the serine phosphate SAM most likely because of reduced mobility due to strong pinning to the surface. We show also that the energy of desorption for a sub-monolayer of D2O ice on serinephosphate SAM surfaces with a Na+ and Ca2+ counterions is equally high or even exceeds previously reported values for analogous high-energy SAMs.  相似文献   

12.
Alkanoic and phosphonic acid derived self-assembled monolayers (SAMs) were formed on magnesium alloy by the vapor phase method. AFM and XPS studies showed that SAMs were formed on Mg alloy. The chemical and anticorrosive properties of the SAMs prepared on magnesium alloys were characterized using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. Water contact angle measurements revealed that, although SA and ISA have the same headgroup to anchor to the magnesium alloy surface, the packing density on the magnesium alloy surface could be considerably different. The contact angle hysteresis of SAMs with a carboxylate headgroup is much larger than that of SAMs with a phosphonic acid group. The XPS O 1s peaks indicated more likely a mix of mono-, bi-, or tridentate binding of phosphonic acid SAM to the oxide or hydroxide surface of the Mg alloy. The electrochemical measurements showed that the phosphonic acid derived SAM had better corrosion resistance compared to alkanoic acid derived SAM. The chemical stability of SAMs modified magnesium alloy was investigated using water contact angle and XPS measurements. The water contact angle and XPS measurements revealed that the molecular density of OP and PFEP on magnesium alloy would be higher than those of SA and ISA on magnesium alloy.  相似文献   

13.
We have undertaken a structural and functional study of self-assembled monolayers (SAMs) formed on gold from a series of alkylthiol compounds containing terminal multivalent chelators (MCHs) composed of mono-, bis-, and tris-nitrilotriacetic acid (NTA) moieties. SAMs were formed from single-component solutions of the mono-, bis-, and tris-NTA compounds, as well as from mixtures with a tri(ethylene glycol)-terminated alkylthiol (EG(3)). Contact angle goniometry, null ellipsometry, and infrared spectroscopy were used to explore the structural characteristics of the MCH SAMs. Ellipsometric measurements show that the amount of the MCH groups on surfaces increases with increasing mol % of the MCH thiols in the loading solution up to about 80 mol %. We also conclude that mixed SAMs, prepared in the solution composition regime 0-30 mol % of the MCH thiols, consist of a densely packed alkyl layer, an amorphous ethylene glycol layer, and an outermost layer of MCH groups exposed toward the ambient. Above 30 mol %, a significant degree of disorder is observed in the SAMs. Finally, functional evaluation of the three MCH SAMs prepared at 0-30 mol% reveals a consistent increase in binding strength with increasing multivalency. The tris-NTA SAM, in particular, is enabled for stable and functional immobilization of a His6-tagged extracellular receptor subunit, even at low chelator surface concentrations, which makes it suitable for applications when a low surface density of capturing sites is desirable, e.g., in kinetic analyses.  相似文献   

14.
We have investigated the formation of self-assembled monolayers (SAMs) of 4'-nitro-1,1-biphenyl-4-diazonium tetrafluoroborate (NBD) onto ultrananocrystalline diamond (UNCD) thin films. In contrast to the common approach to modify diamond and diamond-like substrates by electrografting, the SAM was formed from the saturated solution of NBD in acetonitrile by pure chemical grafting. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and near edge X-ray absorption fine structure spectroscopy (NEXAFS) have been used to verify the direct covalent attachment of the 4'-nitro-1,1-biphenyl (NB) SAM on the diamond substrate via stable C-C bonds and to estimate the monolayer packing density. The results confirm the presence of a very stable, homogeneous and dense monolayer. Additionally, the terminal nitro group of the NB SAM can be readily converted into an amino group by X-ray irradiation as well as electrochemistry. This opens the possibility of in situ electrochemical modification as well as the creation of chemical patterns (chemical lithography) in the SAM on UNCD substrates and enables a variety of consecutive chemical functionalization for sensing and molecular electronics applications.  相似文献   

15.
In formation of binary self-assembled monolayers (SAMs) composed of 2-aminoethanethiol (AET) and 2-mercaptoethane sulfonic acid (MES) by adsorption from an ethanol solution on Au(111), the adsorption shows nearly ideal nonideality in that the surface ratio of MES to AET in the SAM is unity and does not depend on the mixing ratio of MES to AET in the bathing ethanol solution used for preparing SAMs, chi(soln)MES, over the wide range of chi(soln)MES between 0.01 and 0.95. X-ray photoelectron spectroscopy confirms that at least 80% of AET molecules adsorbed are protonated in this range of chi(soln)MES, indicating that the electrostatic interaction between positively charged AET and negatively charged MES is responsible to the observed nonideality. Correspondingly, there appears only one cathodic peak in a linear-sweep voltammogram of the reductive desorption of the SAM, having a narrow full width at half-maximum of about 20 mV. This suggests the presence of strong lateral attractive interaction between the adsorbed thiolates.  相似文献   

16.
Self-assembled monolayers (SAMs) were formed by the spontaneous adsorption of octythiocyanate (OTC) on Au(111) using both solution and ambient-pressure vapor deposition methods at room temperature and 50 degrees C. The surface structures and adsorption characteristics of the OTC SAMs on Au(111) were characterized by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The STM observation showed that OTC SAMs formed in solution at room temperature have unique surface structures including the formation of ordered and disordered domains, vacancy islands, and structural defects. Moreover, we revealed for the first time that the adsorption of OTC on Au(111) in solution at 50 degrees C led to the formation of SAMs containing small ordered domains, whereas the SAMs formed by vapor deposition at 50 degrees C had long-range ordered domains, which can be described as (radical3 x 2 radical19)R5 degrees structures. XPS measurements of the peaks in the S 2p and N 1s regions for the OTC SAMs showed that vapor deposition is the more effective method as compared to solution deposition for obtaining high-quality SAMs by adsorption of OTC on gold. The results obtained will be very useful in understanding the SAM formation of organic thiocyanates on gold surfaces.  相似文献   

17.
Ordered, tightly packed aryl-azide-terminated, self-assembled monolayers (SAMs) were created on gold substrates from a new disulfide precursor. These monolayers were reduced at least partially in an aqueous environment using approximately 2 nm CdS quantum dots (Qdots) as photocatalysts to give mixed monolayers of arylamine- and aryl azide-terminated species. The CdS photocatalysts were made available for the reaction by exposure of the azide-terminated SAM to Qdots initially in solution or by preadsorption of the CdS nanoparticles on the SAM. In either case, X-ray photoelectron spectroscopy (XPS), grazing angle Fourier transform infrared spectroscopy (FTIR), and contact angle measurements were used to show the occurrence of the photocatalytic reduction. As further evidence for the presence of arylamine-terminated thiolate in the reduced SAM, these arylamine groups were successfully tagged with fluorescein isothiocyanate (FITC). The use of Qdot photocatalysts to functionalize surfaces may lead to a means to pattern surfaces at the nanoscale.  相似文献   

18.
Alkylsiloxane self-assembled monolayers (SAMs) are used in the semiconductor industry and, more recently, as proxies for organics adsorbed on airborne mineral dust and on buildings and construction materials. A number of methods have been used for removing the SAM from the substrate after reaction or use, particularly plasmas or piranha (H2SO4/H2O2) solution. However, when the substrates are reused to make new SAMs, the impact of the cleaning methods on the chemistry of subsequently formed SAMs on the surface is not known. Here we report atomic force microscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and Fourier transform infrared studies of changes in a silicon substrate upon repetitive deposition and removal of SAMs by these two methods. It is shown that a thicker layer of silicon oxide is formed, and the surface becomes irregular and roughened, particularly after the piranha treatment. This layer of silica impacts the structure of the SAMs attached to it and can serve as a reservoir for trace gases that adsorb on it, potentially contributing to the subsequent reactions of the SAM. The implications for the use of such surfaces as a proxy for reactions of organics on airborne dust particles and on structures in the boundary layer are discussed.  相似文献   

19.
The surface stress induced during the formation of alkanethiol self-assembled monolayers (SAMs) on gold from the vapor phase was measured using a micromechanical cantilever-based chemical sensor. Simultaneous in situ thickness measurements were carried out using ellipsometry. Ex situ scanning tunneling microscopy was performed in air to ascertain the final monolayer structure. The evolution of the surface stress induced during coverage-dependent structural phase transitions reveals features not apparent in average ellipsometric thickness measurements. These results show that both the kinetics of SAM formation and the resulting SAM structure are strongly influenced both by the surface structure of the underlying gold substrate and by the impingement rate of the alkanethiol onto the gold surface. In particular, the adsorption onto gold surfaces having large, flat grains produces high-quality self-assembled monolayers. An induced compressive surface stress of 15.9 +/- 0.6 N/m results when a c(4x2) dodecanethiol SAM forms on gold. However, the SAMs formed on small-grained gold are incomplete and an induced surface stress of only 0.51 +/- 0.02 N/m results. The progression to a fully formed SAM whose alkyl chains adopt a vertical (standing-up) orientation is clearly inhibited in the case of a small-grained gold substrate and is promoted in the case of a large-grained gold substrate.  相似文献   

20.
We have investigated the seedless electroless deposition (ELD) of Ni on functionalized self-assembled monolayers (SAMs) using scanning electron and optical microscopies, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. For all SAMs studied, the Ni deposition rate is dependent on the bath pH, deposition temperature, and complexing agent. In contrast to the physical vapor deposition of Ni on SAMs, electrolessly deposited Ni does not penetrate through the SAM. This behavior indicates that ELD is a suitable technique for the deposition of low-to-moderate reactivity on organic thin films. We demonstrate that Ni can be selectively deposited on SAMs using two different methods. First, selectivity can be imparted by the formation of Ni(II)-surface complexes. As a demonstration, we selectively deposited Ni on the -COOH terminated SAM areas of patterned -COOH/-CH(3) or -COOH/-OH terminated SAMs. Here, Ni(2+) ions form Ni(2+)-carboxylate complexes with the -COOH terminal group, which comprise the nucleation sites for subsequent metal deposition. Second, we demonstrate that nickel is selectively deposited on the -CH(3) terminated SAM areas of a patterned -OH/-CH(3) terminated SAM. In this case, the Ni(2+) ion does not specifically interact with the -CH(3) terminal group. Rather, selectivity is imparted by the interaction of the reductant, dimethylamine borane (DMAB), with the -OH and -CH(3) terminal groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号