首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
采用共沉淀法制备了Ru/A1OOH催化剂,以XRD,TG/DTA,TEM和氮物理吸附等手段对其基本物化性质进行了表征.在苯液相选择加氢制备环己烯的反应中,该催化剂显示了很高的苯选择加氢活性和选择性,环己烯得率可达35.8%,优于原位焙烧上述催化剂或浸渍法制得的Ru/γ-A12O3催化剂.催化剂结构与催化性能的对比研究进一步揭示催化剂的亲水性和孔结构在苯选择加氢反应中的重要作用.  相似文献   

2.
将可溶性Ru纳米粒子用于催化苯选择性加氢制备环己烯反应,考察了还原方法对Ru纳米粒子催化活性的影响;并以醇水还原法制备的Ru纳米粒子为催化剂,考察了温度和压力对反应性能的影响.当使用脱硫的苯作为原料时,苯转化率可达30.2%,环己烯选择性达到46.9%.以无水兰尼镍作催化剂,100oC时,环氧环己烷加氢转化率为100%,环己醇选择性为93.2%.从原料苯出发制得环己醇的单程收率可达14%,由此找到一条制备环己醇的新途径.  相似文献   

3.
采用化学还原法制备了一种新型高活性和高选择性苯选择加氢制环己烯的Ru-Fe-B/ZrO2纳米非晶态合金催化剂,并利用透射电镜、选区电子衍射、X射线衍射和N2物理吸附仪等手段对催化剂进行了表征.重点研究了Ru-Fe-B/ZrO2催化剂活性和选择性的可调变性,及还原剂NaBH4浓度和洗涤后滤液的pH值对其催化性能的影响.结果表明,在新型Ru-Fe-B/ZrO2催化剂上,当苯转化54%时,环己烯选择性高达80%,同时环己烯选择性随苯转化率升高而缓慢下降.向反应浆液中添加酸性或碱性物质可以调变催化剂的活性和选择性,同时催化剂制备工艺和性能具有很好的可重复性.Ru-Fe-B/ZrO2催化剂融合了纳米和非晶材料的特性,这是其对苯选择加氢制环己烯表现出高活性和高选择性的主要原因.  相似文献   

4.
在低碱度下采用共沉淀法成功制备了非负载型Ru-Zn催化剂,用于苯选择加氢制环己烯反应.固定氢氧化钠沉淀剂的量,考察了不同氯化锌加入量对催化剂结构和催化性能的影响,采用N2吸附、X射线衍射和程序升温还原等手段对催化剂进行了表征.同时考察了选用具有最佳锌含量的Ru-Zn催化剂时搅拌速度和硫酸锌添加剂等对催化反应性能的影响,最后考察了催化剂多次使用时的反应性能.研究表明, Zn含量16.7%(质量分数)的Ru-Zn催化剂具有最佳的催化性能;在ZnSO4水溶液(0.45 mol/L)中,优化反应条件(哈氏合金釜,1200 r/min,150oC, H2压5 MPa)下反应45 min,苯转化率57%时环己烯选择性可达80%(收率超过45%).钌催化剂中ZnO晶体对于环己烯选择性达到80%非常重要.催化剂回收循环反应5次时反应性能基本不变,表明低碱度下制备的催化剂具有良好的稳定性,显示了工业化应用前景.  相似文献   

5.
低碱度共沉淀法制备苯选择加氢Ru-Zn催化剂   总被引:3,自引:0,他引:3  
在低碱度下采用共沉淀法成功制备了非负载型Ru-Zn催化剂,用于苯选择加氢制环己烯反应.固定氢氧化钠沉淀剂的量,考察了不同氯化锌加入量对催化剂结构和催化性能的影响,采用N2吸附、X射线衍射和程序升温还原等手段对催化剂进行了表征.同时考察了选用具有最佳锌含量的Ru-Zn催化剂时搅拌速度和硫酸锌添加剂等对催化反应性能的影响,最后考察了催化剂多次使用时的反应性能.研究表明, Zn含量16.7%(质量分数)的Ru-Zn催化剂具有最佳的催化性能;在ZnSO4水溶液(0.45 mol/L)中,优化反应条件(哈氏合金釜,1200 r/min,150oC, H2压5 MPa)下反应45 min,苯转化率57%时环己烯选择性可达80%(收率超过45%).钌催化剂中ZnO晶体对于环己烯选择性达到80%非常重要.催化剂回收循环反应5次时反应性能基本不变,表明低碱度下制备的催化剂具有良好的稳定性,显示了工业化应用前景.  相似文献   

6.
在低碱度下采用共沉淀法成功制备了非负载型Ru-Zn催化剂,用于苯选择加氢制环己烯反应.固定氢氧化钠沉淀剂的量,考察了不同氯化锌加入量对催化剂结构和催化性能的影响,采用N2吸附、X射线衍射和程序升温还原等手段对催化剂进行了表征.同时考察了选用具有最佳锌含量的Ru-Zn催化剂时搅拌速度和硫酸锌添加剂等对催化反应性能的影响,最后考察了催化剂多次使用时的反应性能.研究表明,Zn含量16.7%(质量分数)的Ru-Zn催化剂具有最佳的催化性能;在Zn SO4水溶液(0.45 mol/L)中,优化反应条件(哈氏合金釜,1200 r/min,150 oC,H2压5 MPa)下反应45 min,苯转化率57%时环己烯选择性可达80%(收率超过45%).钌催化剂中Zn O晶体对于环己烯选择性达到80%非常重要.催化剂回收循环反应5次时反应性能基本不变,表明低碱度下制备的催化剂具有良好的稳定性,显示了工业化应用前景.  相似文献   

7.
采用化学还原法制备了苯选择加氢制环己烯催化剂Ru-B/ZrO2,考察了Cr,Mn,Fe,Co,Ni,Cu和Zn等过渡金属的添加对Ru-B/ZrO2催化剂性能的影响.结果表明,这些过渡金属的添加均可提高Ru-B/ZrO2催化剂中的B含量.B的修饰及第二种金属或金属氧化物的集团效应和配位效应导致Ru-B/ZrO2催化剂活性降低和环己烯选择性升高.当Co/Ru原子比为0.06时,Ru-Co-B/ZrO2催化剂上反应25min苯转化率为75.8%时,环己烯选择性和收率分别为82.8%和62.8%.在双釜串联连续反应器中和优化反应条件下,Ru-Co-B/ZrO2催化剂使用419h内苯转化率稳定在40%左右,环己烯选择性和收率分别稳定在73%和30%左右.  相似文献   

8.
苯在Ru-Zn/ZrO2表面部分加氢反应的理论和实验研究   总被引:1,自引:0,他引:1  
采用理论计算和实验方法研究了 Ru-Zn/ZrO2 催化剂上苯的部分加氢反应. 在还原阶段于水相中引入 Zn2+可使部分 Zn 以原子态进入 Ru 基催化剂. 理论计算表明, Zn 原子在 Ru 基催化剂中的存在同时抑制了苯和环己烯在催化剂表面的化学吸附, 尤其是环己烯在整个催化剂表面的吸附处于一定钝化状态, 这是环己烯选择性提高的重要原因. 实验结果表明, Zn 原子在催化剂中浓度的增加使得催化剂的加氢活性单调下降, 而环己烯选择性则单调上升. 实验和理论计算都证实了 Ru 基催化剂中最佳 Zn 含量的存在.  相似文献   

9.
沉淀法制备苯选择加氢制环己烯Ru-Zn催化剂的研究   总被引:4,自引:0,他引:4  
刘寿长  罗鸽  谢云龙 《分子催化》2002,16(5):349-354
将 Ru Cl3· x H2 O和 Zn Cl2 与 Na OH共沉淀 ,再用适量的 Na OH溶解部分 Zn,制备了以 Ru为活性组分、Zn为助剂的苯选择加氢制环己烯的催化剂 .研究了 Zn含量、碱溶用 Na OH浓度、温度等因素对活性与选择性的影响 ,并用 XRD、SEM、BET比表面积、孔径分布等测试手段对催化剂进行表征 .结果表明 ,Zn含量为 5 %左右时 ,苯的转化率可保持在 6 5 %左右 ,且环己烯的收率较高 .碱溶用 Na OH浓度宜控制在 2 %~ 4 % .沉淀时的反应温度 6 0℃左右较好 .XRD表明 ,活性组分 Ru和 Zn均被还原 ,并形成了 Ru- Zn固溶体 ,Ru微晶粒径为 3~ 5nm,经 SEM可以观察到 Ru微晶呈高分散 .BET比表面积 30~ 4 0 m2 /g,催化剂最可几孔径分布范围 30~ 70nm.与一般沉淀法相比 ,经过碱溶形成的催化剂的孔结构有利于环己烯选择性的提高  相似文献   

10.
PEG稳定的RuB纳米粒子对苯选择加氢制备环己烯显示出良好的催化性能,在不添加硫酸锌的条件下,该体系催化的苯选择性加氢中,环己烯收率高达29%。这一体系的高催化性能是由于PEG稳定的RuB纳米粒子,使催化剂表面的亲水性增强,提高了环己烯的选择性。  相似文献   

11.
采用共沉淀法制备了Ru-Zn催化剂,考察了二乙醇胺的添加对Ru-Zn催化剂上苯选择加氢制环己烯性能的影响,并采用N2物理吸附、透射电镜、X射线衍射、X射线荧光、傅里叶变换红外和程序升温还原等手段对催化剂进行了表征.结果表明,二乙醇胺可以与浆液中ZnSO4反应生成(Zn(OH)2)3(ZnSO4)(H2O)3和硫酸二乙醇胺盐.随着二乙醇胺用量的增加,化学吸附在催化剂表面的(Zn(OH)2)3(ZnSO4)(H2O)3增多,它与硫酸二乙醇胺盐的协同作用提高了Ru-Zn(4.9%)催化剂上苯选择加氢生成环己烯的选择性.当二乙醇胺用量为0.3g时,(Zn(OH)2)3(ZnSO4)(H2O)3在Ru-Zn(4.9%)催化剂加氢后样品的表面高度分散,反应性能最佳,循环使用第3次时苯转化率为84.3%,环己烯选择性和收率分别达75.5%和63.6%;使用至第4次时,反应25min时苯转化率和环己烯选择性仍可达75%以上,环己烯收率为58%以上.  相似文献   

12.
共沉淀法制备了Ru-Zn催化剂,在ZrO_2作分散剂下考察了助剂前体ZnSO_4浓度对苯选择加氢制环己烯Ru-Zn催化剂性能的影响.并用X-射线衍射(XRD)、X-射线荧光光谱(XRF)、N_2-物理吸附、透射电镜(TEM)和X-射线光电子能谱(XPS)等手段对催化剂进行了表征.结果表明,当ZnSO_4前体浓度低于0.10 mol/L时,Ru-Zn催化剂中Zn以ZnO形式存在,在加氢过程中ZnO可以与反应修饰剂ZnSO_4反应生成(Zn( OH)_2)_3(ZnSO_4)(H_2O)_3盐.继续增加ZnSO_4前体浓度,催化剂中Zn以ZnO和NaZn_4(SO_4)(Cl)(OH)_6·6H_2O盐存在,在加氢过程中ZnO和NaZn_4(SO_4)(Cl)(OH)_6·6H_2O盐可以与反应修饰剂ZnSO_4反应生成(Zn( OH)_2)_3(ZnSO_4)(H_2O)_5.(Zn( OH)_2)_3(ZnSO_4)(H_2O)_x(x=3或5)盐的Zn~(2+)可以转移金属Ru的部分电子.因此,随ZnSO_4前体浓度的增加,(Zn( OH)_2)_3(ZnSO_4)(H_2O)_x的量逐渐增加,金属Ru失电子越多,催化剂活性越低,环己烯选择性越高.0.08 mol/L ZnSO_4前体制备Ru-Zn催化剂给出了59.1%的环己烯收率,而且该催化剂具有良好的重复使用性能和稳定性.  相似文献   

13.
液相法苯选择加氢制环己烯催化反应动力学方程   总被引:6,自引:0,他引:6  
 测定了Ru-M-B/ZrO2催化剂上选择加氢制环己烯反应过程中苯、环己烯及环己烷浓度随时间变化的c~t曲线,获得了苯选择加氢制环己烯反应中各步反应的级数和速率常数等动力学参数.结果给出,苯转化的反应级数对苯为1,对氢低压下为2,高压下为0;环己烯继续加氢生成环己烷的反应级数对环己烯为0,对氢低压下为2,高压下为0.在此基础上建立了苯选择加氢制环己烯各步反应的动力学方程,并对动力学方程进行了验证.  相似文献   

14.
Liquid-state hydrogenation of benzene on a supported ruthenium catalyst is studied. The degree of utilization of the inner surface of the porous system is determined. In the presence of water, hydrogenation occurs with the formation of cyclohexene along with cyclohexane.  相似文献   

15.
The influence of some preparative variables, of the metal loading and of the support on the activity of Ru catalysts for the selective hydrogenation of benzene to cyclohexene has been studied. The reaction has been carried out in a tetraphase reactor (in the presence of an aqueous solution of ZnSO4) at 423 K and 5 MPa pressure. The effect of hydrogen diffusion on the reaction kinetics and on cyclohexene selectivity was studied. The hydrophilicity of the support was related to the observed selectivity. Hydrogen chemisorption indicates that the catalyst activity is not influenced by the Ru dispersion, but mainly by the weakly chemisorbed species on the catalyst surface. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2/cordierite monolithic catalyst. The reaction performance of the oxidative coupling of methane (OCM) over the dual-bed reactor system was evaluated. The effects of the bed height and operation mode, as well as the reaction parameters such as reaction temperature, CH4/O2 ratio and flowrate of feed gas, on the catalytic performance were investigated. The results indicated that the suggested dual-bed reactor exhibited a good performance for the OCM reaction when the feed gases firstly passed through the particle catalyst bed and then to the monolithic catalyst bed. A CH4 conversion of 38.2% and a C2H4 selectivity of 43.3% could be obtained using the dual-bed reactor with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm. Both the CH4 conversion and C2H4 selectivity have increased by 2.5% and 12.8%, respectively, as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a conventional single-bed reactor and by 12.9% and 23.0%, respectively, as compared with the 4%Ce-5%Na2WO4-2%Mn/SiO2/cordierite monolithic catalyst in a single-bed reactor. The catalytic performance of the OCM in the dual-bed reactor system has been improved remarkably.  相似文献   

17.
Summary The influence of promoters and precipitants of the catalyst precursor on the activity and selectivity of the hydrogenation of benzene to cyclohexene catalyzed by highly loaded oxide-promoted Ru/ZrO2catalysts, carried out in a tetraphase reactor (in the presence of an aqueous solution of ZnSO4), at 423 K and 5 Mpa, was studied. The effect of hydrogen diffusion on the reaction kinetics and on the selectivity has been taken into consideration, the internal pore diffusion being actually the limiting step. Hydrogen chemisorption measurements indicate that the catalyst activity is not influenced by the Ru dispersion, but rather by weakly chemisorbed species.  相似文献   

18.
共沉淀法制备了Ru-Fe(x)催化剂,并利用X射线衍射(XRD)、X射线荧光光谱(XRF)、N2物理吸附和透射电镜等手段对催化剂进行了表征.结果表明,Ru-Fe(x)催化剂中助剂Fe以Fe3O4形式存在.单独Fe3O4并不能提高Ru催化剂的环己烯选择性.但在加氢过程中Fe3O4可与反应修饰剂ZnSO4反应生成(Zn(OH)2)3(ZnSO4)(H2O)x(x=1 or 3).化学吸附的(Zn(OH)2)3(ZnSO4)(H2O)x(x=1 or 3)在提高Ru催化剂环己烯选择性中起着关键作用.此外,Ru-Fe(x)催化剂的性能还与浆液中的Zn2+浓度和pH值有关.在0.61 mol/L ZnSO4溶液中Ru-Fe(0.47)催化剂不但给出了56.7%的环己烯收率,而且具有良好的稳定性和重复使用性能.化学吸附在Ru表面的Fe2+同样能提高Ru催化剂的环己烯选择性.在0.29 mol/L和0.61 mol/L FeSO4溶液中Ru-Fe(0.47)催化剂上化学吸附Fe2+量近似,性能近似.因为Fe2+和Zn2+性质的差异,在0.29 mol/L和0.61 mol/L FeSO4溶液中Ru-Fe(0.47)催化剂的环己烯选择性分别低于在同浓度的ZnSO4溶液中的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号