首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Aminoglycosides have been at the forefront of antimicrobial therapy for the past 50 years. Their specificity is believed to lie in binding duplex RNAs (rRNA). Competition dialysis studies of various nucleic acid forms with 9-aminoacridine, quinacrine, and a neomycin-acridine conjugate were carried out. Our results suggest a strong preference for aminoglycoside binding to nucleic acids that can adopt an A-type conformation. These results challenge the common belief that aminoglycoside specificity is simply for duplex RNAs.  相似文献   

2.
Nucleic acid molecules may fold into secondary structures, and the formation of such structures is involved in many biological processes and technical applications. The folding and unfolding rate constants define the kinetics of conformation interconversion and the stability of these structures and is important in realizing their functions. We developed a method to determine these kinetic parameters using an optical biosensor based on surface plasmon resonance. The folding and unfolding of a nucleic acid is coupled with a hybridization reaction by immobilization of the target nucleic acid on a sensor chip surface and injection of a complementary probe nucleic acid over the sensor chip surface. By monitoring the time course of duplex formation, both the folding and unfolding rate constants for the target nucleic acid and the association and dissociation rate constants for the target-probe duplex can all be derived from the same measurement. We applied this method to determine the folding and unfolding rate constants of the G-quadruplex of human telomere sequence (TTAGGG)(4) and its association and dissociation rate constants with the complementary strand (CCCTAA)(4). The results show that both the folding and unfolding occur on the time scale of minutes at physiological concentration of K(+). We speculate that this property might be important for telomere elongation. A complete set of the kinetic parameters for both of the structures allows us to study the competition between the formation of the quadruplex and the duplex. Calculations indicate that the formation of both the quadruplex and the duplex is strand concentration-dependent, and the quadruplex can be efficiently formed at low strand concentration. This property may provide the basis for the formation of the quadruplex in vivo in the presence of a complementary strand.  相似文献   

3.
Subtle differences in RNA and DNA duplex geometry could be sensed by the changed stereochemistry at 3'-amino function in the 5-atom thioacetamido linker of thioacetamido-linked nucleic acids and iso-thioacetamido-linked nucleic acids modified oligomers. In contrast to the preferred N-type sugar conformations for either 3'- ribo- or xylo amino nucleosides, predominant S-type sugar conformations were found in the dimers. Although the CD spectral differences for the dimer blocks were found to be identical for those found in phosphodiester linked ribo/xylo dimers, the 5-atom thioactamido linker could reverse the RNA binding selectivity to DNA binding selectivity by the change in configuration at the 3'-amino-substituted sugar.  相似文献   

4.
We report a new Förster resonance energy transfer (FRET) system for structural analyses of DNA duplexes using perylene and Cy3 as donor and acceptor, respectively, linked at the termini of a DNA duplex via D-threoninol. Experimentally obtained FRET efficiencies were in good agreement with theoretical values calculated based on canonical B-form DNA. Due to the relatively long Förster radius, this system can be used to analyze large DNA structures, and duplexes containing photo-reactive molecules can be analyzed since perylene can be excited with visible light. The system was used to analyze a DNA duplex containing stilbene, demonstrating that in the region of the stilbene cluster the duplex adopts a ladder-like structure rather than helical one. Upon photodimerization between stilbene residues, FRET efficiencies indicated the reaction does not disturb DNA duplex. This FRET system will be useful for analysis of photoreactions of nucleobases as well as a wide range of nucleic acid structures.  相似文献   

5.
We hypothesize that programmable hybridization to noncanonical nucleic acid motifs may be achieved by macromolecular display of binders to individual noncanonical pairs (NCPs). As each recognition element may individually have weak binding to an NCP, we developed a semi-rational approach to detect low affinity interactions between selected nitrogenous bases and noncanonical sites in duplex DNA and RNA. A set of fluorogenic probes was synthesized by coupling abiotic (triazines, pyrimidines) and native RNA bases to thiazole orange (TO) dye. This probe library was screened against duplex nucleic acid substrates bearing single abasic, single NCP, and tandem NCP sites. Probe engagement with NCP sites was reported by 100–1000× fluorescence enhancement over background. Binding is strongly context-dependent, reflective of both molecular recognition and stability: less stable motifs are more likely to bind a synthetic probe. Further, DNA and RNA substrates exhibit entirely different abasic and single NCP binding profiles. While probe binding in the abasic and single NCP screens was monotonous, much richer binding profiles were observed with the screen of tandem NCP sites in RNA, in part due to increased steric accessibility. In addition to known binding interactions between the triazine melamine (M) and T/U sites, the NCP screens identified new targeting elements for pyrimidine-rich motifs in single NCPs and 2×2 internal bulges. We anticipate that semi-rational approaches of this type will lead to programmable noncanonical hybridization strategies at the macromolecular level.  相似文献   

6.
Arene-fluoroarene interactions offer outstanding possibilities for engineering of supramolecular systems, including nucleic acids. Here, we implement the tolane-perfluorotolane interaction as base pair replacement in DNA. Tolane (THH) and perfluorotolane (TFF) moieties were connected to acyclic backbone units, comprising glycol nucleic acid (GNA) or butyl nucleic acid (BuNA) building blocks, that were incorporated via phosphoramidite chemistry at opposite positions in a DNA duplex. Thermodynamic analyses by UV thermal melting revealed a compelling stabilization by THH/TFF heteropairs only when connected to the BuNA backbone, but not with the shorter GNA linker. Detailed NMR studies confirmed the preference of the BuNA backbone for enhanced polar π-stacking. This work defines how orthogonal supramolecular interactions can be tailored by small constitutional changes in the DNA backbone, and it inspires future studies of arene-fluoroarene-programmed assembly of DNA.  相似文献   

7.
[Chemical reaction: See text] The synthesis and properties of a nucleic acid analogue consisting of a benzene-phosphate backbone are described. The building blocks of the nucleic acid analogue are composed of bis(hydroxymethyl)benzene residues connected to nucleobases via the biaryl-like axis. Stabilities of the duplexes were studied by thermal denaturation. It was found that the thermal stabilities of the duplexes composed of the benzene-phosphate backbone are highly dependent on their sequences. The duplexes with the benzene-phosphate backbone comprised of the mixed sequences were thermally less stable than the natural DNA duplexes, whereas that composed of the homopyrimidine and homopurine sequences was thermally and thermodynamically more stable than the corresponding natural DNA duplex. It was suggested that the analogues more efficiently stabilize the duplexes in a B-form duplex rather than in an A-form duplex. Thus, the duplexes consisting of the benzene-phosphate backbone, especially composed of the homopyrimidine and homopurine sequences, may offer a novel structural motif useful for developing novel materials applicable in the fields of bio- and nanotechnologies.  相似文献   

8.
We present the first pressure-versus-temperature phase diagram for the helix-to-coil transition of double stranded nucleic acids. The thermodynamic stability of a nucleic acid duplex is a complex function of temperature and pressure and strongly depends on the denaturation temperature, T(M), of the duplex at atmospheric pressure. Depending upon T(M), pressure, and temperature, the phase diagram shows that pressure may stabilize, destabilize, or have no effect on the conformational state of DNA. To verify the phase diagram, we have conducted high-pressure UV melting experiments on poly(dIdC)poly(dIdC), a DNA duplex, poly(rA)poly(rU), an RNA duplex, and poly(dA)poly(rU), a DNA/RNA hybrid duplex. The T(M) values of these duplexes have been modulated by altering the solution ionic strength. Significantly, at low salt, these three duplexes have helix-to-coil transition temperatures of 50 degrees C or less. In agreement with the derived phase diagram, we found that the polymeric duplexes were destabilized by pressure if the T(M) is < approximately 50 degrees C. However, these duplexes were stabilized by pressure if the T(M) is > approximately 50 degrees C. The DNA/RNA hybrid duplex, poly(dA)poly(rU), with a T(M) of 31 degrees C in 20 mM NaCl undergoes a pressure-induced helix-to-coil transition at room temperature. This is the first report of pressure-induced denaturation of a nucleic acid duplex and provides new insights into the molecular forces stabilizing these structures.  相似文献   

9.
The results of the Monte Carlo Metropolis simulation of water structure and of the hydration of nucleic acid fragments, complementary base pairs and mispairs, base pair stacks, and duplex fragments have been summarized. Systematic investigations suggest some general conclusions: (1) the hydration shell structure of the major and minor grooves of the duplex depends significantly on DNA conformation (or stack configuration) and nucleotide sequence, while global hydration characteristics (average energy, the number of water–water and water–base H-bonds) are only slightly dependent on these factors, (2) hydration economy takes place in the B–A transition due to an increase of the number of water molecules forming hydrogen bonds with two or more atoms of bases (water bridging), and (3) the hydration of the duplex could contribute to nucleic acid functioning via water-bridged mispair formation and stabilization of specific conformations.  相似文献   

10.
Recent studies on metal incorporation in ligand-modified nucleic acids have focused on the effect of metal coordination on the stability of metal-containing duplexes or triplexes and on the metal binding selectivity but did not address the effect of the sequence of the nucleic acid in which the ligands are incorporated. We have introduced 8-hydroxyquinoline Q in 10-mer PNA strands with various sequences and have investigated the properties of the duplexes formed from these strands upon binding of Cu(2+). Variable-temperature UV-vis spectroscopy shows that, in the presence of Cu(2+), duplexes are formed even from ligand-modified Q-PNA strands that have a large number of mismatches. Spectrophotometric titrations demonstrate that at any temperature, one Cu(2+) ion binds a pair of Q-PNA strands that each contain one 8-hydroxyquinoline, but below the melting temperature, the PNA duplex exerts a supramolecular chelate effect, which prevents the transformation in the presence of excess Cu(2+) of the 1:2 Cu(2+):Q-PNA complexes into 1:1 complexes. EPR spectroscopy gives further support for the existence in the duplexes of [CuQ(2)] moieties that are similar to the corresponding square planar synthetic complex formed between Cu(2+) and 8-hydroxyquinoline. As PNA duplexes show a preferred handedness due to the chiral induction effect of a C-terminal l-lysine, which is transmitted through stacking interactions within the duplex, only if the metal-containing duplex has complementary strands, does it show a chiral excess measured by CD spectroscopy. The strong effect of the metal-ligand moiety is suggestive of an increased correlation length in PNA duplexes that contain such moieties. These results indicate that strong metal-ligand alternative base pairs significantly diminish the importance of Watson-Crick base pairing for the formation of a stable PNA duplex and lead to high mismatch tolerance, a principle that can be used in the construction of hybrid inorganic-nucleic acid nanostructures.  相似文献   

11.
In the human genome, the G-rich sequences that form quadruplexes are present along with their C-rich complementary strands; this suggests the existence of equilibrium between a quadruplex and a Watson-Crick duplex which allows the execution of their respective biological functions. We have investigated the sensitivity of this equilibrium to pharmacological agents by employing locked nucleic acid (LNA) modified complementary strands, and demonstrated successful invasion of the stable telomeric quadruplex d[(G(3)TTA)(3)G(3)]. Fluorescence, UV, ITC, and SPR studies were performed to understand the binding process involving the preformed quadruplex and LNA-modified complementary strands compared with that involving the unmodified complementary strand. Our data indicate that LNA modifications in the complementary strand shift the equilibrium toward the duplex state. These modifications confer increased thermodynamic stability to the duplex and increase the magnitude of relative free energy (DeltaDeltaG degrees) difference between duplex and quadruplex, thus favoring the predominance of duplex population over quadruplex. This superior ability of LNA-modified complementary strand can be exploited to pave an exploratory approach in which it hybridizes to a telomeric quadruplex and drives duplex formation, and inhibits the recognition of 3' G-rich overhang by RNA template of telomerase which guides telomere extension.  相似文献   

12.
We report here the synthesis of oligo-2'-deoxyribonucleotides (ODNs) conjugated with perylene. Introduction of perylene, coupled either directly or via a propyl linker to the anomeric position of a 2'-deoxyribose residue, induces the formation of two anomers. Single incorporations of each pure anomer of these sugar-perylene units have been performed at either the 5'-end or an internal position of a pyrimidic pentadecamer. The binding properties of these modified ODNs with their single- and double-stranded DNA targets were studied by absorption spectroscopy. Double incorporations of the sugar-perylene unit most efficient at stabilizing the triplex and duplex structures (the beta-anomer involving the propyl linker) have been performed at both the 5'-end and at an internal position (or both the 5'- and 3'-ends) of the ODN chain. Comparison has been made with ODN-perylene conjugates involving either one or two perylenes attached via a longer polymethylene chain to either the 5'- or 3'- (or both the 5'-and 3'-) terminal phosphate groups. The ODNs involving two perylenes are more efficient at stabilizing the triplex and the duplex structures than the ODNs involving only one perylene and, among these, the ODN-perylene conjugate involving two sugar-perylene units attached at both termini is the most efficient. The results of the fluorescence studies have shown an important increase in the intensity of the fluorescent signal upon hybridization of the ODNs involving two perylenes with either the single- or the double-stranded targets. This increase in the intensity of the fluorescent signal could be used as proof of the hybridization.  相似文献   

13.
The synthesis of 2'-amino-LNA (the 2'-amino derivative of locked nucleic acid) has opened up a number of exciting possibilities with respect to modified nucleic acids. While maintaining the excellent duplex stability inferred by LNA-type oligonucleotides, the nitrogen in the 2'-position of 2'-amino-LNA monomers provides an excellent handle for functionalisation. Herein, the synthesis of amino acid functionalised 2'-amino-LNA derivatives is described. Following ON synthesis, a glycyl unit attached to the N2'-position of 2'-amino-LNA monomers was further acylated with a variety of amino acids. On binding to DNA/RNA complements, the modified ONs induce a marked increase in thermal stability, which is particularly apparent in a buffer system with a low salt concentration. The increase in thermal stability is thought to be caused, at least in part, by decreased electrostatic repulsion between the negatively charged phosphate backbones when positively charged amino acid residues are appended. Upon incorporation of more than one 2'-amino-LNA modification, the effects are found to be nearly additive. For comparison, 2'-amino-LNA derivatives modified with uncharged groups have been synthesised and their effect on duplex thermal stability likewise investigated.  相似文献   

14.
Label-free and reagentless aptamer-based sensors for small molecules   总被引:1,自引:0,他引:1  
A label free, reagentless aptasensor for adenosine is developed on an ISFET device. The separation of an aptamer/nucleic acid duplex by adenosine leads to the aptamer/adenosine complex that alters the gate potential of the ISFET. The sensitivity limit of the device is 5 x 10-5 M. Also, the immobilization of the aptamer/nucleic acid duplex on an Au-electrode and the separation of the duplex by adenosine mono-phosphate (AMP) enable the electrochemical detection of adenosine by faradaic impedance spectroscopy. The separation of the aptamer/nucleic acid duplex by adenosine and the formation of the aptamer/adenosine complex results in a decrease in the interfacial electron-transfer resistance in the presence of [Fe(CN)6]3-/4- as redox active substrate.  相似文献   

15.
稀土氨基酸配合物与核酸的相互作用*   总被引:4,自引:0,他引:4  
很多抗癌金属药物是以核酸为靶标。阐明小分子与核酸之间的相互作用对筛选具有高效选择性和低毒副作用的抗癌药物有重要意义。近年来,开发新型的具有对核酸序列特异性识别能力的抗癌药物己成为本领域的研究热点。稀土离子具有良好的磁学、光学、电学特性和配位能力,使稀土配合物成为新型药物试剂。然而,稀土离子在中性条件下易水解的特性极大地阻碍了稀土配合物对核酸分子识别的研究。近年来在近生理条件下合成的一系列镧系氨基酸配合物具有结构稳定、溶解性好等优点,解决了镧系离子易水解的问题。本文总结了目前关于镧系氨基酸配合物与核酸的相互作用及其序列选择性等方面的研究进展。  相似文献   

16.
Spectroscopic and calorimetric techniques were employed to characterize and contrast the binding of the aminoglycoside paromomycin to three octamer nucleic acid duplexes of identical sequence but different strand composition (a DNA.RNA hybrid duplex and the corresponding DNA.DNA and RNA.RNA duplexes). In addition, the impact of paromomycin binding on both RNase H- and RNase A-mediated cleavage of the RNA strand in the DNA.RNA duplex was also determined. Our results reveal the following significant features: (i) Paromomycin binding enhances the thermal stabilities of the RNA.RNA and DNA.RNA duplexes to similar extents, with this thermal enhancement being substantially greater in magnitude than that of the DNA.DNA duplex. (ii) Paromomycin binding to the DNA.RNA hybrid duplex induces CD changes consistent with a shift from an A-like to a more canonical A-conformation. (iii) Paromomycin binding to all three octamer duplexes is linked to the uptake of a similar number of protons, with the magnitude of this number being dependent on pH. (iv) The affinity of paromomycin for the three host duplexes follows the hierarchy, RNA.RNA > DNA.RNA > DNA.DNA. (v) The observed affinity of paromomycin for the RNA.RNA and DNA.RNA duplexes decreases with increasing pH. (vi) The binding of paromomycin to the DNA.RNA hybrid duplex inhibits both RNase H- and RNase A-mediated cleavage of the RNA strand. We discuss the implications of our combined results with regard to the specific targeting of DNA.RNA hybrid duplex domains and potential antiretroviral applications.  相似文献   

17.
Many strategies have been developed to modulate the biological or biotechnical properties of oligonucleotides by introducing new chemical functionalities or by enhancing their affinity and specificity while restricting their conformational space. Among them, we review our approach consisting of modifications of the 5’-C-position of the nucleoside sugar. This allows the introduction of an additional chemical handle at any position on the nucleotide chain without disturbing the Watson–Crick base-pairing. We show that 5’-C bromo or propargyl convertible nucleotides (CvN) are accessible in pure diastereoisomeric form, either for nucleophilic displacement or for CuAAC conjugation. Alternatively, the 5’-carbon can be connected in a stereo-controlled manner to the phosphate moiety of the nucleotide chain to generate conformationally constrained nucleotides (CNA). These allow the precise control of the sugar/phosphate backbone torsional angles. The consequent modulation of the nucleic acid shape induces outstanding stabilization properties of duplex or hairpin structures in accordance with the preorganization concept. Some biological applications of these distorted oligonucleotides are also described. Effectively, the convertible and the constrained approaches have been merged to create constrained and convertible nucleotides (C2NA) providing unique tools to functionalize and stabilize nucleic acids.  相似文献   

18.
G‐rich nucleic acid sequences with the potential to form G‐quadruplex structures are common in biologically important regions. Most of these sequences are present with their complementary strands, so the development of a sensitive biosensor to distinguish G‐quadruplex and duplex structures and to determine the competitive ability of quadruplex to duplex structures has received a great deal of attention. In this work, the interactions between two triphenylmethane dyes (malachite green (MG) and crystal violet (CV)) and G‐quadruplex, duplex, or single‐stranded DNAs were studied by fluorescence spectroscopy and energy‐transfer fluorescence spectroscopy. Good discrimination between quadruplexes and duplex or single‐stranded DNAs can be achieved by using the fluorescence spectrum of CV or the energy‐transfer fluorescence spectra of CV and MG. In addition, by using energy‐transfer fluorescence titrations of CV with G‐quadruplexes, the binding‐stoichiometry ratios of CV to G‐quadruplexes can be determined. By using the fluorescence titrations of G‐quadruplex–CV complexes with C‐rich complementary strands, the fraction of G‐rich oligonucleotide that engages in G‐quadruplex structures in the presence of the complementary sequence can be measured. This study may provide a simple method for discrimination between quadruplexes and duplex or single‐stranded DNAs and for measuring G‐quadruplex percentages in the presence of the complementary C‐rich sequences.  相似文献   

19.
The crystal structure of an 8-mer (S)-GNA duplex is presented. As a tool for phasing, the anomalous diffraction of two copper(II) ions within two artificial metallo-base pairs was employed. The duplex structure confirms a canonical Watson-Crick base pairing scheme of GNA with antiparallel strands. The duplex secondary structure is distinct from canonical A- and B-form nucleic acids and can be described as a right-handed helical ribbon wrapped around the helix axis, resulting in a large hollow core. Most intriguingly, neighboring base pairs slide strongly against each other, resulting in extensive interstrand base-base hydrophobic interactions along with unusual hydrophobic intrastrand interactions of nucleobases with their backbone. These results reveal how a minimal nucleic acid backbone can support highly stable Watson-Crick-like duplex formation.  相似文献   

20.
Arian D  Kovbasyuk L  Mokhir A 《Inorganic chemistry》2011,50(23):12010-12017
Photocatalytic activity of a photosensitizer (PS) in an oligodeoxyribonucleotide duplex 5'-PS~ODN1/ODN2~Q-3' is inhibited because of close proximity of a quencher Q. The ODN2 in this duplex is selected to be longer than the ODN1. Therefore, in the presence of a nucleic acid (analyte), which is fully complementary to the ODN2 strand, the duplex is decomposed with formation of an analyte/ODN2~Q duplex and a catalytically active, single stranded PS~ODN1. In this way the catalytic activity of the PS can be controlled by the specific nucleic acids. We applied this reaction earlier for the amplified detection of ribonucleic acids in live cells (Arian, D.; Cló, E.; Gothelf, K.; Mokhir, A. Chem.-Eur. J.2010, 16(1), 288). As a photosensitizer (PS) we used In(3+)(pyropheophorbide-a)chloride and as a quencher (Q)--Black-Hole-Quencher-3 (BHQ-3). The In(3+) complex is a highly active photocatalyst in aqueous solution. However, it can coordinate additional ligands containing thiols (e.g., proteins, peptides, and aminoacids), that modulate properties of the complex itself and of the corresponding bio- molecules. These possible interactions can lead to undesired side effects of nucleic acid controlled photocatalysts (PS~ODN1/ODN2~Q) in live cells. In this work we explored the possibility to substitute the In(3+) complex for those ones of divalent metal ions, Zn(2+) and Pd(2+), which exhibit lower or no tendency to coordinate the fifth ligand. We found that one of the compounds tested (Pd(pyropheophorbide-a) is as potent and as stable photosensitizer as its In(3+) analogue, but does not coordinate additional ligands that makes it more suitable for cellular applications. When the Pd complex was introduced in the duplex PS~ODN1/ODN2~Q as a PS, its photocatalytic activity could be controlled by nucleic acids as efficiently as that of the corresponding In(3+) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号