首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the first part of the paper we study decays of solutions of the Navier–Stokes equations on short time intervals. We show, for example, that if w is a global strong nonzero solution of homogeneous Navier–Stokes equations in a sufficiently smooth (unbounded) domain Ω ⊆ R3 and β ∈[1/2, 1) , then there exist C0 > 1 and δ0 ∈ (0, 1) such that
\frac |||w(t)|||b|||w(t + d)|||bC0{\frac {|||w(t)|||_\beta}{|||w(t + \delta)|||_{\beta}}} \leq C_0  相似文献   

2.
We study a two-dimensional nonconvex and nonlocal energy in micromagnetics defined over S 2-valued vector fields. This energy depends on two small parameters, β and e{\varepsilon} , penalizing the divergence of the vector field and its vertical component, respectively. Our objective is to analyze the asymptotic regime b << e << 1{\beta \ll \varepsilon \ll 1} through the method of Γ-convergence. Finite energy configurations tend to become divergence-free and in-plane in the magnetic sample except in some small regions of typical width e{\varepsilon} (called Bloch walls) where the magnetization connects two directions on S 2. We are interested in quantifying the limit energy of the transition layers in terms of the jump size between these directions. For one-dimensional transition layers, we show by Γ-convergence analysis that the exact line density of the energy is quadratic in the jump size. We expect the same behaviour for the two-dimensional model. In order to prove that, we investigate the concept of entropies. In the prototype case of a periodic strip, we establish a quadratic lower bound for the energy with a non-optimal constant. Then we introduce and study a special class of Lipschitz entropies and obtain lower bounds coinciding with the one-dimensional Γ-limit in some particular cases. Finally, we show that entropies are not appropriate in general for proving the expected sharp lower bound.  相似文献   

3.
The streamwise evolution of an inclined circular cylinder wake was investigated by measuring all three velocity and vorticity components using an eight-hotwire vorticity probe in a wind tunnel at a Reynolds number Red of 7,200 based on free stream velocity (U ) and cylinder diameter (d). The measurements were conducted at four different inclination angles (α), namely 0°, 15°, 30°, and 45° and at three downstream locations, i.e., x/d = 10, 20, and 40 from the cylinder. At x/d = 10, the effects of α on the three coherent vorticity components are negligibly small for α ≤ 15°. When α increases further to 45°, the maximum of coherent spanwise vorticity reduces by about 50%, while that of the streamwise vorticity increases by about 70%. Similar results are found at x/d = 20, indicating the impaired spanwise vortices and the enhancement of the three-dimensionality of the wake with increasing α. The streamwise decay rate of the coherent spanwise vorticity is smaller for a larger α. This is because the streamwise spacing between the spanwise vortices is bigger for a larger α, resulting in a weak interaction between the vortices and hence slower decaying rate in the streamwise direction. For all tested α, the coherent contribution to [`(v2)] \overline{{v^{2}}} is remarkable at x/d = 10 and 20 and significantly larger than that to [`(u2)] \overline{{u^{2}}} and [`(w2)]. \overline{{w^{2}}}. This contribution to all three Reynolds normal stresses becomes negligibly small at x/d = 40. The coherent contribution to [`(u2)] \overline{{u^{2}}} and [`(v2)] \overline{{v^{2}}} decays slower as moving downstream for a larger α, consistent with the slow decay of the coherent spanwise vorticity for a larger α.  相似文献   

4.
Fractional calculus has gained a lot of importance during the last decades, mainly because it has become a powerful tool in modeling several complex phenomena from various areas of science and engineering. This paper gives a new kind of perturbation of the order of the fractional derivative with a study of the existence and uniqueness of the perturbed fractional-order evolution equation for CDa-e0+u(t)=A CDd0+u(t)+f(t),^{C}D^{\alpha-\epsilon}_{0+}u(t)=A~^{C}D^{\delta}_{0+}u(t)+f(t), u(0)=u o , α∈(0,1), and 0≤ε, δ<α under the assumption that A is the generator of a bounded C o -semigroup. The continuation of our solution in some different cases for αε and δ is discussed, as well as the importance of the obtained results is specified.  相似文献   

5.
In this paper, we consider v(t) = u(t) − e tΔ u 0, where u(t) is the mild solution of the Navier–Stokes equations with the initial data u0 ? L2(\mathbb Rn)?Ln(\mathbb Rn){u_0\in L^2({\mathbb R}^n)\cap L^n({\mathbb R}^n)} . We shall show that the L 2 norm of D β v(t) decays like t-\frac |b|-1 2-\frac n4{t^{-\frac {|\beta|-1} {2}-\frac n4}} for |β| ≥ 0. Moreover, we will find the asymptotic profile u 1(t) such that the L 2 norm of D β (v(t) − u 1(t)) decays faster for 3 ≤ n ≤ 5 and |β| ≥ 0. Besides, higher-order asymptotics of v(t) are deduced under some assumptions.  相似文献   

6.
This paper is concerned with the asymptotic stability of degenerate stationary waves for viscous gases in the half space. We discuss the following two cases: (1) viscous conservation laws and (2) damped wave equations with nonlinear convection. In each case, we prove that the solution converges to the corresponding degenerate stationary wave at the rate t −α/4 as t → ∞, provided that the initial perturbation is in the weighted space L2a=L2(\mathbb R+; (1+x)a dx){L^2_\alpha=L^2({\mathbb R}_+;\,(1+x)^\alpha dx)} . This convergence rate t −α/4 is weaker than the one for the non-degenerate case and requires the restriction α < α*(q), where α*(q) is the critical value depending only on the degeneracy exponent q. Such a restriction is reasonable because the corresponding linearized operator for viscous conservation laws cannot be dissipative in L2a{L^2_\alpha} for α > α*(q) with another critical value α*(q). Our stability analysis is based on the space–time weighted energy method in which the spatial weight is chosen as a function of the degenerate stationary wave.  相似文献   

7.
Consider the class of C r -smooth SL(2, \mathbb R){SL(2, \mathbb R)} valued cocycles, based on the rotation flow on the two torus with irrational rotation number α. We show that in this class, (i) cocycles with positive Lyapunov exponents are dense and (ii) cocycles that are either uniformly hyperbolic or proximal are generic, if α satisfies the following Liouville type condition: |a-\fracpnqn| £ C exp (-qr+1+kn)\left|\alpha-\frac{p_n}{q_n}\right| \leq C {\rm exp} (-q^{r+1+\kappa}_{n}), where C >  0 and 0 < k < 1{0 < \kappa <1 } are some constants and \fracPnqn{\frac{P_n}{q_n}} is some sequence of irreducible fractions.  相似文献   

8.
Recently, numerical studies revealed two different scaling regimes of the peak enstrophy Z and palinstrophy P during the collision of a dipole with a no-slip wall [Clercx and van Heijst, Phys. Rev. E 65, 066305, 2002]: Z μ Re0.8{Z\propto{\rm Re}^{0.8}} and P μ Re2.25{P\propto {\rm Re}^{2.25}} for 5 × 102 ≤ Re ≤ 2 × 104 and Z μ Re0.5{Z\propto{\rm Re}^{0.5}} and P μ Re1.5{P\propto{\rm Re}^{1.5}} for Re ≥ 2 × 104 (with Re based on the velocity and size of the dipole). A critical Reynolds number Re c (here, Rec ? 2×104{{\rm Re}_c\approx 2\times 10^4}) is identified below which the interaction time of the dipole with the boundary layer depends on the kinematic viscosity ν. The oscillating plate as a boundary-layer problem can then be used to mimick the vortex-wall interaction and the following scaling relations are obtained: Z μ Re3/4, P μ Re9/4{Z\propto{\rm Re}^{3/4}, P\propto {\rm Re}^{9/4}} , and dP/dt μ Re11/4{\propto {\rm Re}^{11/4}} in agreement with the numerically obtained scaling laws. For Re ≥ Re c the interaction time of the dipole with the boundary layer becomes independent of the kinematic viscosity and, applying flat-plate boundary-layer theory, this yields: Z μ Re1/2{Z\propto{\rm Re}^{1/2}} and P μ Re3/2{P\propto {\rm Re}^{3/2}}.  相似文献   

9.
Understanding turbulent wall-bounded flows remains an elusive goal. Most turbulent phenomena are non-linear, complex and have broad range of scales that are difficult to completely resolve. Progress is made only in minute steps and enlightening models are rare. Herein, we undertake the effort to bundle several experimental and numerical databases to overcome some of these difficulties and to learn more about the kinematics of turbulent wall-bounded flows. The general scope of the present work is to quantify the characteristics of wall-normal and spanwise Reynolds stresses, which might be different for confined (e.g., pipe) and semi-confined (e.g., boundary layer) flows. In particular, the peak position of wall-normal stress and a shoulder in spanwise stress never described in detail before are investigated using select experimental and direct numerical simulation databases available in the open literature. It is found that the positions of the á v2 ñ + \left\langle {v'{^2} } \right\rangle^{ + } -peak in confined and semi-confined flow differ significantly above δ + ≈ 600. A similar behavior is found for the position of the á uv¢ ñ + \left\langle {u'v'} \right\rangle^{ + } -peak. The upper end of the logarithmic region seems to be closely related to the position of the á v2 ñ + \left\langle {v'{^2} } \right\rangle^{ + } -peak. The á w2 ñ + \left\langle {w'{^2} } \right\rangle^{ + } -shoulder is found to be twice as far from the wall than the á v2 ñ + \left\langle {v'{^2} } \right\rangle^{ + } -peak. It covers a significantly large portion of the typical zero-pressure-gradient turbulent boundary layer.  相似文献   

10.
In a bounded domain of R n+1, n ≧ 2, we consider a second-order elliptic operator, ${A=-{\partial_{x_0}^2} - \nabla_x \cdot (c(x) \nabla_x)}In a bounded domain of R n+1, n ≧ 2, we consider a second-order elliptic operator, A=-?x02 - ?x ·(c(x) ?x){A=-{\partial_{x_0}^2} - \nabla_x \cdot (c(x) \nabla_x)}, where the (scalar) coefficient c(x) is piecewise smooth yet discontinuous across a smooth interface S. We prove a local Carleman estimate for A in the neighborhood of any point of the interface. The “observation” region can be chosen independently of the sign of the jump of the coefficient c at the considered point. The derivation of this estimate relies on the separation of the problem into three microlocal regions and the Calderón projector technique. Following the method of Lebeau and Robbiano (Comm Partial Differ Equ 20:335–356, 1995) we then prove the null controllability for the linear parabolic initial problem with Dirichlet boundary conditions associated with the operator ?t - ?x ·(c(x) ?x){{\partial_t - \nabla_x \cdot (c(x) \nabla_x)}} .  相似文献   

11.
We study the regularity of the extremal solution of the semilinear biharmonic equation ${{\Delta^2} u=\frac{\lambda}{(1-u)^2}}We study the regularity of the extremal solution of the semilinear biharmonic equation D2 u=\fracl(1-u)2{{\Delta^2} u=\frac{\lambda}{(1-u)^2}}, which models a simple micro-electromechanical system (MEMS) device on a ball B ì \mathbbRN{B\subset{\mathbb{R}}^N}, under Dirichlet boundary conditions u=?n u=0{u=\partial_\nu u=0} on ?B{\partial B}. We complete here the results of Lin and Yang [14] regarding the identification of a “pull-in voltage” λ* > 0 such that a stable classical solution u λ with 0 < u λ < 1 exists for l ? (0,l*){\lambda\in (0,\lambda^*)}, while there is none of any kind when λ > λ*. Our main result asserts that the extremal solution ul*{u_{\lambda^*}} is regular (supB ul* < 1 ){({\rm sup}_B u_{\lambda^*} <1 )} provided N \leqq 8{N \leqq 8} while ul*{u_{\lambda^*}} is singular (supB ul* = 1){({\rm sup}_B u_{\lambda^*} =1)} for N \geqq 9{N \geqq 9}, in which case 1-C0|x|4/3 \leqq ul* (x) \leqq 1-|x|4/3{1-C_0|x|^{4/3} \leqq u_{\lambda^*} (x) \leqq 1-|x|^{4/3}} on the unit ball, where C0:=(\fracl*[`(l)])\frac13{C_0:=\left(\frac{\lambda^*}{\overline{\lambda}}\right)^\frac{1}{3}} and [`(l)]: = \frac89(N-\frac23)(N- \frac83){\bar{\lambda}:= \frac{8}{9}\left(N-\frac{2}{3}\right)\left(N- \frac{8}{3}\right)}.  相似文献   

12.
The one-dimensional, gravity-driven film flow of a linear (l) or exponential (e) Phan-Thien and Tanner (PTT) liquid, flowing either on the outer or on the inner surface of a vertical cylinder or over a planar wall, is analyzed. Numerical solution of the governing equations is generally possible. Analytical solutions are derived only for: (1) l-PTT model in cylindrical and planar geometries in the absence of solvent, b o [(h)\tilde]s/([(h)\tilde]s +[(h)\tilde]p)=0\beta\equiv {\tilde{\eta}_s}/\left({\tilde{\eta}_s +\tilde{\eta}_p}\right)=0, where [(h)\tilde]p\widetilde{\eta}_p and [(h)\tilde]s\widetilde{\eta}_s are the zero-shear polymer and solvent viscosities, respectively, and the affinity parameter set at ξ = 0; (2) l-PTT or e-PTT model in a planar geometry when β = 0 and x 1 0\xi \ne 0; (3) e-PTT model in planar geometry when β = 0 and ξ = 0. The effect of fluid properties, cylinder radius, [(R)\tilde]\tilde{R}, and flow rate on the velocity profile, the stress components, and the film thickness, [(H)\tilde]\tilde{H}, is determined. On the other hand, the relevant dimensionless numbers, which are the Deborah, De=[(l)\tilde][(U)\tilde]/[(H)\tilde]De={\tilde{\lambda}\tilde{U}}/{\tilde{H}}, and Stokes, St=[(r)\tilde][(g)\tilde][(H)\tilde]2/([(h)\tilde]p +[(h)\tilde]s )[(U)\tilde]St=\tilde{\rho}\tilde{g}\tilde{\rm H}^{2}/\left({\tilde{\eta}_p +\tilde{\eta}_s} \right)\tilde{U}, numbers, depend on [(H)\tilde]\tilde{H} and the average film velocity, [(U)\tilde]\widetilde{U}. This makes necessary a trial and error procedure to obtain [(H)\tilde]\tilde{H} a posteriori. We find that increasing De, ξ, or the extensibility parameter ε increases shear thinning resulting in a smaller St. The Stokes number decreases as [(R)\tilde]/[(H)\tilde]{\tilde{R}}/{\tilde{H}} decreases down to zero for a film on the outer cylindrical surface, while it asymptotes to very large values when [(R)\tilde]/[(H)\tilde]{\tilde{R}}/{\tilde{H}} decreases down to unity for a film on the inner surface. When x 1 0\xi \ne 0, an upper limit in De exists above which a solution cannot be computed. This critical value increases with ε and decreases with ξ.  相似文献   

13.
We prove a regularity result for the anisotropic linear elasticity equation ${P u := {\rm div} \left( \boldmath\mathsf{C} \cdot \nabla u\right) = f}We prove a regularity result for the anisotropic linear elasticity equationP u : = div ( C ·?u) = f{P u := {\rm div} \left( \boldmath\mathsf{C} \cdot \nabla u\right) = f} , with mixed (displacement and traction) boundary conditions on a curved polyhedral domain W ì \mathbbR3{\Omega \subset \mathbb{R}^3} in weighted Sobolev spaces Km+1a+1(W){\mathcal {K}^{m+1}_{a+1}(\Omega)} , for which the weight is given by the distance to the set of edges. In particular, we show that there is no loss of Kma{\mathcal {K}^{m}_{a}} -regularity. Our curved polyhedral domains are allowed to have cracks. We establish a well-posedness result when there are no neighboring traction boundary conditions and |a| < η, for some small η > 0 that depends on P, on the boundary conditions, and on the domain Ω. Our results extend to other strongly elliptic systems and higher dimensions.  相似文献   

14.
We consider the asymptotic behaviour of positive solutions u(t, x) of the fast diffusion equation ${u_t=\Delta (u^{m}/m)= {\rm div}\,(u^{m-1} \nabla u)}We consider the asymptotic behaviour of positive solutions u(t, x) of the fast diffusion equation ut=D(um/m) = div (um-1 ?u){u_t=\Delta (u^{m}/m)= {\rm div}\,(u^{m-1} \nabla u)} posed for x ? \mathbb Rd{x\in\mathbb R^d}, t > 0, with a precise value for the exponent m = (d − 4)/(d − 2). The space dimension is d ≧ 3 so that m < 1, and even m = −1 for d = 3. This case had been left open in the general study (Blanchet et al. in Arch Rat Mech Anal 191:347–385, 2009) since it requires quite different functional analytic methods, due in particular to the absence of a spectral gap for the operator generating the linearized evolution. The linearization of this flow is interpreted here as the heat flow of the Laplace– Beltrami operator of a suitable Riemannian Manifold (\mathbb Rd,g){(\mathbb R^d,{\bf g})}, with a metric g which is conformal to the standard \mathbb Rd{\mathbb R^d} metric. Studying the pointwise heat kernel behaviour allows to prove suitable Gagliardo–Nirenberg inequalities associated with the generator. Such inequalities in turn allow one to study the nonlinear evolution as well, and to determine its asymptotics, which is identical to the one satisfied by the linearization. In terms of the rescaled representation, which is a nonlinear Fokker–Planck equation, the convergence rate turns out to be polynomial in time. This result is in contrast with the known exponential decay of such representation for all other values of m.  相似文献   

15.
We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L (Ω), W ì \mathbb Rd{\Omega \subset \mathbb R^d}) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general case of arbitrary bounded coefficients. For such problems, we introduce explicit and optimal finite dimensional approximations of solutions that can be viewed as a theoretical Galerkin method with controlled error estimates, analogous to classical homogenization approximations. In particular, this approach allows one to analyze a given medium directly without introducing the mathematical concept of an e{\epsilon} family of media as in classical homogenization. We define the flux norm as the L 2 norm of the potential part of the fluxes of solutions, which is equivalent to the usual H 1-norm. We show that in the flux norm, the error associated with approximating, in a properly defined finite-dimensional space, the set of solutions of the aforementioned PDEs with rough coefficients is equal to the error associated with approximating the set of solutions of the same type of PDEs with smooth coefficients in a standard space (for example, piecewise polynomial). We refer to this property as the transfer property. A simple application of this property is the construction of finite dimensional approximation spaces with errors independent of the regularity and contrast of the coefficients and with optimal and explicit convergence rates. This transfer property also provides an alternative to the global harmonic change of coordinates for the homogenization of elliptic operators that can be extended to elasticity equations. The proofs of these homogenization results are based on a new class of elliptic inequalities. These inequalities play the same role in our approach as the div-curl lemma in classical homogenization.  相似文献   

16.
In this paper we study the following coupled Schr?dinger system, which can be seen as a critically coupled perturbed Brezis–Nirenberg problem: {ll-Du +l1 u = m1 u3+buv2,     x ? W,-Dv +l2 v = m2 v3+bvu2,     x ? W,u\geqq 0, v\geqq 0 in W,    u=v=0     on ?W.\left\{\begin{array}{ll}-\Delta u +\lambda_1 u = \mu_1 u^3+\beta uv^2, \quad x\in \Omega,\\-\Delta v +\lambda_2 v =\mu_2 v^3+\beta vu^2, \quad x\in \Omega,\\u\geqq 0, v\geqq 0\, {\rm in}\, \Omega,\quad u=v=0 \quad {\rm on}\, \partial\Omega.\end{array}\right.  相似文献   

17.
Let Ω be a bounded smooth domain in ${{\bf R}^N, N\geqq 3}Let Ω be a bounded smooth domain in RN, N\geqq 3{{\bf R}^N, N\geqq 3}, and Da1,2(W){D_a^{1,2}(\Omega)} be the completion of C0(W){C_0^\infty(\Omega)} with respect to the norm:
||u||a2W |x|-2a|?u|2dx.||u||_a^2=\int_\Omega |x|^{-2a}|\nabla u|^2{d}x.  相似文献   

18.
Let (M, g) be a n-dimensional ( ${n\geqq 2}Let (M, g) be a n-dimensional ( n\geqq 2{n\geqq 2}) compact Riemannian manifold with boundary where g denotes a Riemannian metric of class C . This paper is concerned with the study of the wave equation on (M, g) with locally distributed damping, described by
l utt - Dgu+ a(xg(ut)=0,   on M×] 0,¥[ ,u=0 on ?M ×] 0,¥[, \left. \begin{array}{l} u_{tt} - \Delta_{{\bf g}}u+ a(x)\,g(u_{t})=0,\quad\hbox{on\ \thinspace}{M}\times \left] 0,\infty\right[ ,u=0\,\hbox{on}\,\partial M \times \left] 0,\infty \right[, \end{array} \right.  相似文献   

19.
Let v and ω be the velocity and the vorticity of the a suitable weak solution of the 3D Navier–Stokes equations in a space-time domain containing z0=(x0, t0)z_{0}=(x_{0}, t_{0}), and let Qz0,r = Bx0,r ×(t0 -r2, t0)Q_{z_{0},r}= B_{x_{0},r} \times (t_{0} -r^{2}, t_{0}) be a parabolic cylinder in the domain. We show that if either $\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r})$\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r}) with $\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r})$\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r}) with \frac3g + \frac2a £ 2\frac{3}{\gamma} + \frac{2}{\alpha} \leq 2, where Lγ, αx,t denotes the Serrin type of class, then z0 is a regular point for ν. This refines previous local regularity criteria for the suitable weak solutions.  相似文献   

20.
Let D2 ì \mathbbR2 {D^2} \subset {\mathbb{R}^2} be a closed unit 2-disk centered at the origin O ? \mathbbR2 O \in {\mathbb{R}^2} and let F be a smooth vector field such that O is a unique singular point of F and all other orbits of F are simple closed curves wrapping once around O. Thus, topologically O is a “center” singularity. Let q:D2\{ O } ? ( 0, + ¥ ) \theta :D2\backslash \left\{ O \right\} \to \left( {0, + \infty } \right) be the function associating with each zO its period with respect to F. In general, such a function cannot be even continuously defined at O. Let also D+ (F) {\mathcal{D}^{+} }(F) be the group of diffeomorphisms of D 2 that preserve orientation and leave invariant each orbit of F. It is proved that θ smoothly extends to all of D 2 if and only if the 1-jet of F at O is a “rotation,” i.e., j1F(O) = - y\frac??x + x\frac??y {j^1}F(O) = - y\frac{\partial }{{\partial x}} + x\frac{\partial }{{\partial y}} . Then D+ (F) {\mathcal{D}^{+} }(F) is homotopy equivalent to a circle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号