首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper is concerned with the convergence problems of Newton’s method and the uniqueness problems of singular points for sections on Riemannian manifolds. Suppose that the covariant derivative of the sections satisfies the generalized Lipschitz condition. The convergence balls of Newton’s method and the uniqueness balls of singular points are estimated. Some applications to special cases, which include the Kantorovich’s condition and the γ-condition, as well as the Smale’s γ-theory for sections on Riemannian manifolds, are given. In particular, the estimates here are completely independent of the sectional curvature of the underlying Riemannian manifold and improve significantly the corresponding ones due to Dedieu, Priouret and Malajovich (IMA J. Numer. Anal. 23:395–419, 2003), as well as the ones in Li and Wang (Sci. China Ser. A. 48(11):1465–1478, 2005).  相似文献   

2.
Riemannian maps were introduced by Fischer (Contemp. Math. 132:331–366, 1992) as a generalization isometric immersions and Riemannian submersions. He showed that such maps could be used to solve the generalized eikonal equation and to build a quantum model. On the other hand, horizontally conformal maps were defined by Fuglede (Ann. Inst. Fourier (Grenoble) 28:107–144, 1978) and Ishihara (J. Math. Kyoto Univ. 19:215–229, 1979) and these maps are useful for characterization of harmonic morphisms. Horizontally conformal maps (conformal maps) have their applications in medical imaging (brain imaging)and computer graphics. In this paper, as a generalization of Riemannian maps and horizontally conformal submersions, we introduce conformal Riemannian maps, present examples and characterizations. We show that an application of conformal Riemannian maps can be made in weakening the horizontal conformal version of Hermann’s theorem obtained by Okrut (Math. Notes 66(1):94–104, 1999). We also give a geometric characterization of harmonic conformal Riemannian maps and obtain decomposition theorems by using the existence of conformal Riemannian maps.  相似文献   

3.
The purpose of this work is to study some monotone functionals of the heat kernel on a complete Riemannian manifold with nonnegative Ricci curvature. In particular, we show that on these manifolds, the gradient estimate of Li and Yau (Acta Math. 156, 153–201, 1986), the gradient estimate of Ni (J. Geom. Anal. 14(1), 87–100, 2004), the monotonicity of the Perelman’s entropy and the volume doubling property are all consequences of an entropy inequality recently discovered by Baudoin and Garofalo, , 2009. The latter is a linearized version of a logarithmic Sobolev inequality that is due to D. Bakry and M. Ledoux (Rev. Mat. Iberoam. 22, 683–702, 2006).  相似文献   

4.
We show that the spectrum of a complete submanifold properly immersed into a ball of a Riemannian manifold is discrete, provided the norm of the mean curvature vector is sufficiently small. In particular, the spectrum of a complete minimal surface properly immersed into a ball of ℝ3 is discrete. This gives a positive answer to a question of Yau (Asian J. Math. 4:235–278, 2000).  相似文献   

5.
This note is a continuation of the author’s paper (Li, Adv. Math. 223(6):1924–1957, 2010). We prove that if the metric g of a compact 4-manifold has bounded Ricci curvature and its curvature has no local concentration everywhere, then it can be smoothed to a metric with bounded sectional curvature. Here we don’t assume the bound for local Sobolev constant of g and hence this smoothing result can be applied to the collapsing case.  相似文献   

6.
Lusternik–Schnirelmann category of a manifold gives a lower bound of the number of critical points of a differentiable map on it. The purpose of this paper is to show how to construct cone-decompositions of manifolds by using functions of class C 1 and their gradient flows, where cone-decompositions are used to give an upper bound for the Lusternik–Schnirelmann category which is a homotopy invariant of a topological space. In particular, the Morse–Bott functions on the Stiefel manifolds considered by Frankel (1965) are effectively used to construct the conedecompositions of Stiefel manifolds and symmetric Riemannian spaces to determine their Lusternik–Schnirelmann categories.  相似文献   

7.
Under the condition that the Bakry–Emery Ricci curvature is bounded from below, we prove a probabilistic representation formula of the Riesz transforms associated with a symmetric diffusion operator on a complete Riemannian manifold. Using the Burkholder sharp L p -inequality for martingale transforms, we obtain an explicit and dimension-free upper bound of the L p -norm of the Riesz transforms on such complete Riemannian manifolds for all 1 < p < ∞. In the Euclidean and the Gaussian cases, our upper bound is asymptotically sharp when p→ 1 and when p→ ∞. Research partially supported by a Delegation in CNRS at the University of Paris-Sud during the 2005–2006 academic year.  相似文献   

8.
We have established (see Shiohama and Xu in J. Geom. Anal. 7:377–386, 1997; Lemma) an integral formula on the absolute Lipschitz-Killing curvature and critical points of height functions of an isometrically immersed compact Riemannian n-manifold into R n+q . Making use of this formula, we prove a topological sphere theorem and a differentiable sphere theorem for hypersurfaces with bounded L n/2 Ricci curvature norm in R n+1. We show that the theorems of Gauss-Bonnet-Chern, Chern-Lashof and the Willmore inequality are all its consequences.  相似文献   

9.
We show that the combinatorial complexity of the union of n infinite cylinders in ℝ3, having arbitrary radii, is O(n 2+ε ), for any ε>0; the bound is almost tight in the worst case, thus settling a conjecture of Agarwal and Sharir (Discrete Comput. Geom. 24:645–685, 2000), who established a nearly-quadratic bound for the restricted case of nearly congruent cylinders. Our result extends, in a significant way, the result of Agarwal and Sharir (Discrete Comput. Geom. 24:645–685, 2000), in particular, a simple specialization of our analysis to the case of nearly congruent cylinders yields a nearly-quadratic bound on the complexity of the union in that case, thus significantly simplifying the analysis in Agarwal and Sharir (Discrete Comput. Geom. 24:645–685, 2000). Finally, we extend our technique to the case of “cigars” of arbitrary radii (that is, Minkowski sums of line-segments and balls) and show that the combinatorial complexity of the union in this case is nearly-quadratic as well. This problem has been studied in Agarwal and Sharir (Discrete Comput. Geom. 24:645–685, 2000) for the restricted case where all cigars have (nearly) equal radii. Based on our new approach, the proof follows almost verbatim from the analysis for infinite cylinders and is significantly simpler than the proof presented in Agarwal and Sharir (Discrete Comput. Geom. 24:645–685, 2000).  相似文献   

10.
Recently, Roos (SIAM J Optim 16(4):1110–1136, 2006) presented a primal-dual infeasible interior-point algorithm that uses full-Newton steps and whose iteration bound coincides with the best known bound for infeasible interior-point algorithms. In the current paper we use a different feasibility step such that the definition of the feasibility step in Mansouri and Roos (Optim Methods Softw 22(3):519–530, 2007) is a special case of our definition, and show that the same result on the order of iteration complexity can be obtained.   相似文献   

11.
Deckelnick and Dziuk (Math. Comput. 78(266):645–671, 2009) proved a stability bound for a continuous-in-time semidiscrete parametric finite element approximation of the elastic flow of closed curves in \mathbbRd, d 3 2{\mathbb{R}^d, d\geq2} . We extend these ideas in considering an alternative finite element approximation of the same flow that retains some of the features of the formulations in Barrett et al. (J Comput Phys 222(1): 441–462, 2007; SIAM J Sci Comput 31(1):225–253, 2008; IMA J Numer Anal 30(1):4–60, 2010), in particular an equidistribution mesh property. For this new approximation, we obtain also a stability bound for a continuous-in-time semidiscrete scheme. Apart from the isotropic situation, we also consider the case of an anisotropic elastic energy. In addition to the evolution of closed curves, we also consider the isotropic and anisotropic elastic flow of a single open curve in the plane and in higher codimension that satisfies various boundary conditions.  相似文献   

12.
We provide a semilocal convergence analysis for a certain class of secant-like methods considered also in Argyros (J Math Anal Appl 298:374–397, 2004, 2007), Potra (Libertas Mathematica 5:71–84, 1985), in order to approximate a locally unique solution of an equation in a Banach space. Using a combination of Lipschitz and center-Lipschitz conditions for the computation of the upper bounds on the inverses of the linear operators involved, instead of only Lipschitz conditions (Potra, Libertas Mathematica 5:71–84, 1985), we provide an analysis with the following advantages over the work in Potra (Libertas Mathematica 5:71–84, 1985) which improved the works in Bosarge and Falb (J Optim Theory Appl 4:156–166, 1969, Numer Math 14:264–286, 1970), Dennis (SIAM J Numer Anal 6(3):493–507, 1969, 1971), Kornstaedt (1975), Larsonen (Ann Acad Sci Fenn, A 450:1–10, 1969), Potra (L’Analyse Numérique et la Théorie de l’Approximation 8(2):203–214, 1979, Aplikace Mathematiky 26:111–120, 1981, 1982, Libertas Mathematica 5:71–84, 1985), Potra and Pták (Math Scand 46:236–250, 1980, Numer Func Anal Optim 2(1):107–120, 1980), Schmidt (Period Math Hung 9(3):241–247, 1978), Schmidt and Schwetlick (Computing 3:215–226, 1968), Traub (1964), Wolfe (Numer Math 31:153–174, 1978): larger convergence domain; weaker sufficient convergence conditions, finer error bounds on the distances involved, and a more precise information on the location of the solution. Numerical examples further validating the results are also provided.  相似文献   

13.
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Newton-type methods, under mild differentiability conditions. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in some interesting cases (Chen, Ann Inst Stat Math 42:387–401, 1990; Chen, Numer Funct Anal Optim 10:37–48, 1989; Cianciaruso, Numer Funct Anal Optim 24:713–723, 2003; Cianciaruso, Nonlinear Funct Anal Appl 2009; Dennis 1971; Deuflhard 2004; Deuflhard, SIAM J Numer Anal 16:1–10, 1979; Gutiérrez, J Comput Appl Math 79:131–145, 1997; Hernández, J Optim Theory Appl 109:631–648, 2001; Hernández, J Comput Appl Math 115:245–254, 2000; Huang, J Comput Appl Math 47:211–217, 1993; Kantorovich 1982; Miel, Numer Math 33:391–396, 1979; Miel, Math Comput 34:185–202, 1980; Moret, Computing 33:65–73, 1984; Potra, Libertas Mathematica 5:71–84, 1985; Rheinboldt, SIAM J Numer Anal 5:42–63, 1968; Yamamoto, Numer Math 51: 545–557, 1987; Zabrejko, Numer Funct Anal Optim 9:671–684, 1987; Zinc̆ko 1963). Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.  相似文献   

14.
15.
In this paper, we analyze the outer approximation property of the algorithm for generalized semi-infinite programming from Stein and Still (SIAM J. Control Optim. 42:769–788, 2003). A simple bound on the regularization error is found and used to formulate a feasible numerical method for generalized semi-infinite programming with convex lower-level problems. That is, all iterates of the numerical method are feasible points of the original optimization problem. The new method has the same computational cost as the original algorithm from Stein and Still (SIAM J. Control Optim. 42:769–788, 2003). We also discuss the merits of this approach for the adaptive convexification algorithm, a feasible point method for standard semi-infinite programming from Floudas and Stein (SIAM J. Optim. 18:1187–1208, 2007).  相似文献   

16.
In (Gluskin, Litvak in Geom. Dedicate 90:45–48, [2002]) it was shown that a polytope with few vertices is far from being symmetric in the Banach–Mazur distance. More precisely, it was shown that Banach–Mazur distance between such a polytope and any symmetric convex body is large. In this note we introduce a new, averaging-type parameter to measure the asymmetry of polytopes. It turns out that, surprisingly, this new parameter is still very large, in fact it satisfies the same lower bound as the Banach–Mazur distance. In a sense it shows the following phenomenon: if a convex polytope with small number of vertices is as close to a symmetric body as it can be, then most of its vertices are as bad as the worst one. We apply our results to provide a lower estimate on the vertex index of a symmetric convex body, which was recently introduced in (Bezdek, Litvak in Adv. Math. 215:626–641, [2007]). Furthermore, we give the affirmative answer to a conjecture by Bezdek (Period. Math. Hung. 53:59–69, [2006]) on the quantitative illumination problem.  相似文献   

17.
Order-compactifications of totally ordered spaces were described by Blatter (J Approx Theory 13:56–65, 1975) and by Kent and Richmond (J Math Math Sci 11(4):683–694, 1988). Their results generalize a similar characterization of order-compactifications of linearly ordered spaces, obtained independently by Fedorčuk (Soviet Math Dokl 7:1011–1014, 1966; Sib Math J 10:124–132, 1969) and Kaufman (Colloq Math 17:35–39, 1967). In this note we give a simple characterization of the topology of a totally ordered space, as well as give a new simplified proof of the main results of Blatter (J Approx Theory 13:56–65, 1975) and Kent and Richmond (J Math Math Sci 11(4):683–694, 1988). Our main tool will be an order-topological modification of the Dedekind-MacNeille completion. In addition, for a zero-dimensional totally ordered space X, we determine which order-compactifications of X are Priestley order-compactifications.  相似文献   

18.
We address two fundamental questions in the representation theory of affine Hecke algebras of classical types. One is an inductive algorithm to compute characters of tempered modules, and the other is the determination of the constants in the formal degrees of discrete series (in the form conjectured by Reeder (J. Reine Angew. Math. 520:37–93, 2000)). The former is completely different from the Lusztig-Shoji algorithm (Shoji in Invent. Math. 74:239–267, 1983; Lusztig in Ann. Math. 131:355–408, 1990), and it is more effective in a number of cases. The main idea in our proof is to introduce a new family of representations which behave like tempered modules, but for which it is easier to analyze the effect of parameter specializations. Our proof also requires a comparison of the C -theoretic results of Opdam, Delorme, Slooten, Solleveld (J. Inst. Math. Jussieu 3:531–648, 2004; ; Int. Math. Res. Not., 2008; Adv. Math. 220:1549–1601, 2009; Acta Math. 205:105–187, 2010), and the geometric construction from Kato (Duke Math. J. 148:305–371, 2009; Am. J. Math. 133:518–553, 2011), Ciubotaru and Kato (Adv. Math. 226:1538–1590, 2011).  相似文献   

19.
In this paper, we study a variation of the equations of a chemotaxis kinetic model and investigate it in one dimension. In fact, we use fractional diffusion for the chemoattractant in the Othmar–Dunbar–Alt system (Othmer in J Math Biol 26(3):263–298, 1988). This version was exhibited in Calvez in Amer Math Soc, pp 45–62, 2007 for the macroscopic well-known Keller–Segel model in all space dimensions. These two macroscopic and kinetic models are related as mentioned in Bournaveas, Ann Inst H Poincaré Anal Non Linéaire, 26(5):1871–1895, 2009, Chalub, Math Models Methods Appl Sci, 16(7 suppl):1173–1197, 2006, Chalub, Monatsh Math, 142(1–2):123–141, 2004, Chalub, Port Math (NS), 63(2):227–250, 2006. The model we study here behaves in a similar way to the original model in two dimensions with the spherical symmetry assumption on the initial data which is described in Bournaveas, Ann Inst H Poincaré Anal Non Linéaire, 26(5):1871–1895, 2009. We prove the existence and uniqueness of solutions for this model, as well as a convergence result for a family of numerical schemes. The advantage of this model is that numerical simulations can be easily done especially to track the blow-up phenomenon.  相似文献   

20.
We extend the applicability of the Gauss–Newton method for solving singular systems of equations under the notions of average Lipschitz–type conditions introduced recently in Li et al. (J Complex 26(3):268–295, 2010). Using our idea of recurrent functions, we provide a tighter local as well as semilocal convergence analysis for the Gauss–Newton method than in Li et al. (J Complex 26(3):268–295, 2010) who recently extended and improved earlier results (Hu et al. J Comput Appl Math 219:110–122, 2008; Li et al. Comput Math Appl 47:1057–1067, 2004; Wang Math Comput 68(255):169–186, 1999). We also note that our results are obtained under weaker or the same hypotheses as in Li et al. (J Complex 26(3):268–295, 2010). Applications to some special cases of Kantorovich–type conditions are also provided in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号