首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We develop the reconstruction of the f(T) gravity model according to the holographic dark energy. T is the torsion scalar and its initial value from the teleparallel gravity is imposed for fitting the initial value of the function f(T). The evolutionary nature of the holographic dark energy is essentially based on two important parameters, Ω V  and ω V , respectively, the dimensionless dark energy and the parameter of the equation of state, related to the holographic dark energy. The result shows a polynomial function for f(T), and we also observe that, when Ω V →1 at the future time, ω V may cross −1 for some values of the input parameter b. Another interesting aspect of the obtained model is that it provides a unification scenario of dark matter with dark energy.  相似文献   

2.
For a general class of analytic f(R)-gravity theories, we discuss the weak field limit in view of gravitational lensing. Though an additional Yukawa term in the gravitational potential modifies dynamics with respect to the standard Newtonian limit of General Relativity, the motion of massless particles results unaffected thanks to suitable cancellations in the post-Newtonian limit. Thus, all the lensing observables are equal to the ones known from General Relativity. Since f(R)-gravity is claimed, among other things, to be a possible solution to overcome for the need of dark matter in virialized systems, we discuss the impact of our results on the dynamical and gravitational lensing analyses. In this framework, dynamics could, in principle, be able to reproduce the astrophysical observations without recurring to dark matter, but in the case of gravitational lensing we find that dark matter is an unavoidable ingredient. Another important implication is that gravitational lensing, in the post-Newtonian limit, is not able to constrain these extended theories, since their predictions do not differ from General Relativity.  相似文献   

3.
In a recent paper (Sharif and Shamir in Class. Quantum Grav. 26:235020, 2009), we have studied the vacuum solutions of Bianchi types I and V spacetimes in the framework of metric f (R) gravity. Here we extend this work to perfect fluid solutions. For this purpose, we take stiff matter to find energy density and pressure of the universe. In particular, we find two exact solutions in each case which correspond to two models of the universe. The first solution gives a singular model while the second solution provides a non-singular model. The physical behavior of these models has been discussed using some physical quantities. Also, the function of the Ricci scalar is evaluated.  相似文献   

4.
In this paper, we investigate the Noether symmetries of F(T) cosmology involving matter and dark energy. In this model, the dark energy is represented by a canonical scalar field with a potential. Two special cases for dark energy are considered, including phantom energy and quintessence. We obtain F(T)~T 3/4, and the scalar potential V(?)~? 2 for both models of dark energy and discuss quantum picture of this model. Some astrophysical implications are also discussed.  相似文献   

5.
In this paper, we reconstruct cosmological models in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the stress-energy tensor. We show that the dust fluid reproduces ΛCDM, phantom–non-phantom era and phantom cosmology. Further, we reconstruct different cosmological models, including the Chaplygin gas, and scalar field with some specific forms of f(R,T). Our numerical simulation for the Hubble parameter shows good agreement with the BAO observational data for low redshifts, z<2.  相似文献   

6.
We explore the cosmological implications of the interactions among the dark particles in the dark SU(2) R model. It turns out that the relevant interaction is between dark energy and dark matter, through a decay process. With respect to the standard ΛCDM model, it changes only the background equations. We note that the observational aspects of the model are dominated by degeneracies between the parameters that describe the process. Thus, only the usual Λ CDM parameters such as the Hubble expansion rate and the dark energy density parameter (interpreted as the combination of the densities of the dark energy doublet) could be constrained by observations at this moment.  相似文献   

7.
From a macroscopic theory of the quantum vacuum in terms of conserved relativistic charges (generically denoted by q (a) with label a), we have obtained, in the low-energy limit, a particular type of f(R) model relevant to cosmology. The macroscopic quantum-vacuum theory allows us to distinguish between different phenomenological f(R) models on physical grounds. The text was submitted by the authors in English.  相似文献   

8.
In previous work, we undertook to study static and anisotropic content in f(T) theory and obtained new spherically symmetric solutions considering a constant torsion and some particular conditions for the pressure. In this paper, still in the framework of f(T) theory, new spherically symmetric solutions are obtained, first considering the general case of an isotropic fluid and later the anisotropic content case in which the generalized conditions for the matter content are considered such that the energy density, the radial and tangential pressures depend on the algebraic f(T) and its derivative f T (T). Moreover, we obtain the algebraic function f(T) through the reconstruction method for two cases and also study a polytropic model for the stellar structure.  相似文献   

9.
We reconsider the holographic dark energy (HDE) model with a slowly time varying c 2(z) parameter in the energy density, namely \(\rho _{D}=3{M_{p}^{2}} c^{2}(z)/L^{2}\), where L is the IR cutoff and z is the redshift parameter. As the system’s IR cutoff we choose the Hubble radius and the Granda-Oliveros (GO) cutoffs. The latter inspired by the Ricci scalar curvature. We derive the evolution of the cosmological parameters such as the equation of state and the deceleration parameters as the explicit functions of the redshift parameter z. Then, we plot the evolutions of these cosmological parameters in terms of the redshift parameter during the history of the universe. Interestingly enough, we observe that by choosing L = H ?1 as the IR cutoff for the HDE with time varying c 2(z) term, the present acceleration of the universe expansion can be achieved, even in the absence of interaction between dark energy and dark matter. This is in contrast to the usual HDE model with constant c 2 term, which leads to a wrong equation of state, namely that for dust w D =0, when the IR cutoff is chosen the Hubble radius.  相似文献   

10.
In the Friedmann cosmology, the deceleration of the expansion q plays a fundamental role. We derive the deceleration as a function of redshift q(z) in two scenarios: ΛCDM model and modified Chaplygin gas (MCG) model. The function for the MCG model is then fitted to the cosmological data in order to obtain the cosmological parameters that minimize χ 2. We use the Fisher matrix to construct the covariance matrix of our parameters and reconstruct the q(z) function. We use Supernovae Ia, WMAP5, and BAO measurements to obtain the observational constraints. We determined the present acceleration as q 0 = − 0.65 ±0.19 for the MCG model using the Union2 dataset of SNeIa, BAO, and CMB and q 0 = − 0.67 ±0.17 for the Constitution dataset, BAO and CMB. The transition redshift from deceleration to acceleration was found to be around 0.80 for both datasets. We have also determined the dark energy parameter for the MCG model: Ω X0 = 0.81 ±0.03 for the Union2 dataset and Ω X0 = 0.83 ±0.03 using the Constitution dataset.  相似文献   

11.
In this communication we have investigated Bianchi type-II dark energy (DE) cosmological models with and without presence of magnetic field in modified f(R, T) gravity theory as proposed by Harko et al. (Phys. Rev. D, 84, 024020, 2011). The exact solution of the field equations is obtained by setting the deceleration parameter q as a time function along with suitable assumption the scale factor \(a(t)= [sinh(\alpha t)]^{\frac {1}{n}}\), α and n are positive constant. We have obtained a class of accelerating and decelerating DE cosmological models for different values of n and α. The present study believes that the mysterious dark energy is the main responsible force for accelerating expansion of the universe. For our constructed models the DE candidates cosmological constant (Λ) and the EoS parameter (ω) both are found to be time varying quantities. The cosmological constant Λ is very large at early time and approaches to a small positive value at late time whereas the EoS parameters is found small negative at present time. Physical and kinematical properties of the models are discussed with the help of pictorial representations of the parameters. We have observed that our constructed models are compatible with recent cosmological observations.  相似文献   

12.
The scalar–tensor f(R) theory of gravity is considered in the framework of a simple inhomogeneous space-time model. In this research we use the reconstruction technique to look for possible evolving wormhole solutions within viable f(R) gravity formalism. These f(R) models are then constrained so that they are consistent with existing experimental data. Energy conditions related to the matter threading the wormhole are analyzed graphically and are in general found to obey the null energy conditions (NEC) in regions around the throat, while in the limit \(f(R)=R,\) NEC can be violated at large in regions around the throat.  相似文献   

13.
We propose a model-independent formalism to numerically solve the modified Friedmann equations in the framework of f(T) teleparallel cosmology. Our strategy is to expand the Hubble parameter around the redshift \(z=0\) up to a given order and to adopt cosmographic bounds as initial settings to determine the corresponding \(f(z)\equiv f(T(H(z)))\) function. In this perspective, we distinguish two cases: the first expansion is up to the jerk parameter, the second expansion is up to the snap parameter. We show that inside the observed redshift domain \(z\le 1\), only the net strength of f(z) is modified passing from jerk to snap, whereas its functional behavior and shape turn out to be identical. As first step, we set the cosmographic parameters by means of the most recent observations. Afterwards, we calibrate our numerical solutions with the concordance \(\Lambda \)CDM model. In both cases, there is a good agreement with the cosmological standard model around \(z\le 1\), with severe discrepancies outer of this limit. We demonstrate that the effective dark energy term evolves following the test-function: \(f(z)={\mathcal {A}}+{\mathcal {B}}{z}^2e^{{\mathcal {C}}{z}}\). Bounds over the set \(\left\{ {\mathcal {A}}, {\mathcal {B}}, {\mathcal {C}}\right\} \) are also fixed by statistical considerations, comparing discrepancies between f(z) with data. The approach opens the possibility to get a wide class of test-functions able to frame the dynamics of f(T) without postulating any model a priori. We thus re-obtain the f(T) function through a back-scattering procedure once f(z) is known. We figure out the properties of our f(T) function at the level of background cosmology, to check the goodness of our numerical results. Finally, a comparison with previous cosmographic approaches is carried out giving results compatible with theoretical expectations.  相似文献   

14.
It is shown that the acceleration of the universe can be understood by considering a F(T) gravity models. For these F(T) gravity models, a variant of the accelerating cosmology reconstruction program is developed. Some explicit examples of F(T) are reconstructed from the background FRW expansion history.  相似文献   

15.
We study f(T) cosmological models inserting a non-vanishing spatial curvature and discuss its consequences on cosmological dynamics. To figure this out, a polynomial f(T) model and a double torsion model are considered. We first analyze those models with cosmic data, employing the recent surveys of Union 2.1, baryonic acoustic oscillation and cosmic microwave background measurements. We then emphasize that the two popular f(T) models enable the crossing of the phantom divide line due to dark torsion. Afterwards, we compute numerical bounds up to 3-\(\sigma \) confidence level, emphasizing the fact that \(\Omega _{k0}\) turns out to be non-compatible with zero at least at 1\(\sigma \). Moreover, we underline that, even increasing the accuracy, one cannot remove the degeneracy between our models and the \(\Lambda \)CDM paradigm. So that, we show that our treatments contain the concordance paradigm and we analyze the equation of state behaviors at different redshift domains. We also take into account gamma ray bursts and we describe the evolution of both the f(T) models with high redshift data. We calibrate the gamma ray burst measurements through small redshift surveys of data and we thus compare the main differences between non-flat and flat f(T) cosmology at different redshift ranges. We finally match the corresponding outcomes with small redshift bounds provided by cosmography. To do so, we analyze the deceleration parameters and their variations, proportional to the jerk term. Even though the two models well fit late-time data, we notice that the polynomial f(T) approach provides an effective de-Sitter phase, whereas the second f(T) framework shows analogous results compared with the \(\Lambda \)CDM predictions.  相似文献   

16.
We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G5/6 support expansion of universe while those with f(G) = G1/2 do not favor the current expansion.  相似文献   

17.
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.  相似文献   

18.
The energy dependence of the Cronin momentum for p + A and A + A collisions in the saturation model are calculated. This dependence is consistent with simple dimensional considerations and can be used to test the validity of the saturation model. It gives the possibility to distinguish the different variants of the saturation model with precise experimental data and to measure the x dependence of the saturation momentum.  相似文献   

19.
The well-known energy problem is discussed in f (R) theory of gravity. We use the generalized Landau–Lifshitz energy–momentum complex in the framework of metric f (R) gravity to evaluate the energy density of plane symmetric solutions for some general f (R) models. In particular, this quantity is found for some popular choices of f (R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.  相似文献   

20.
Cosmological models with variable G in C-field cosmology for barotropic fluid distribution in FRW space-time are investigated. To get the deterministic model of the universe, we have assumed that G=R n where R is the scale factor and n the constant. To obtain the results in terms of cosmic time t, we have assumed n=−1. We find that for n=−1, Creation field (C) and spatial volume increase with time, G and ρ (matter density) decreases with time, the model represent accelerating universe. Thus inflationary scenario exists in the model. The model is also free from horizon. The results so obtained match with the astronomical observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号