首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation of molecular active species on the surface of nano-materials has become promising routes to produce efficient electrocatalysts. Development of cost-effective catalysts with high performances for oxygen reduction reaction (ORR) is an important challenge for fuel cell and metal-air battery applications. In this work, we report a novel hybrid produced by room-temperature solution processes using Ni-based organometallic molecules and N-doped graphene-based materials. Chemical and structural characterizations reveal that Ni-containing species are well-dispersed on the surface of graphene network as molecular entity. The hybrid shows excellent electrocatalytic performances for ORR in basic medium with an onset potential of 0.87 V (vs. RHE), superior durability and good methanol tolerance.  相似文献   

2.
A systematic study on the electrocatalytic properties of Pt nanoparticles supported on nitrobenzene-modified graphene (Pt-NB/G) as catalyst for oxygen reduction reaction (ORR) in alkaline solution was performed. Graphene nanosheets were spontaneously grafted with nitrophenyl groups using 4-nitrobenzenediazonium salt. The electrocatalytic activity towards the ORR and stability of the prepared catalysts in 0.1 M KOH solution have been studied and compared with that of the commercial Pt/C catalyst. The results obtained show that the NB-modified graphene nanosheets can be good Pt catalyst support with high stability and excellent electrocatalytic properties. The specific activity of Pt-NB/G for O2 reduction was 0.184 mA cm−2, which is very close to that obtained for commercial 20 wt% Pt/C catalyst (0.214 mA cm−2) at 0.9 V vs. RHE. The Pt-NB/G hybrid material promotes a four-electron reduction of oxygen and can be used as a promising cathode catalyst in alkaline fuel cells.  相似文献   

3.
Metal-free carbon electrocatalyts for the oxygen reduction reaction (ORR) are attractive for their high activity and economic advantages. However, the origin of the activity has never been clearly elucidated in a systematic manner. Halogen group elements are good candidates for elucidating the effect, although it has been a difficult task due to safety issues. In this report, we demonstrate the synthesis of Cl-, Br- and I-doped reduced graphene oxide through two solution phase syntheses. We have evaluated the effectiveness of doping and performed electrochemical measurements of the ORR activity on these halogenated graphene materials. Our results suggest that the high electroneg-ativity of the dopant is not the key factor for high ORR activity; both Br- and I-doped graphene promoted ORR more efficiently than Cl-doped graphene. Furthermore, an unexpected sulfur-doping in acidic conditions suggests that a high level of sulfide can degrade the ORR activity of the graphene material.  相似文献   

4.
Iron‐ and nitrogen‐functionalized graphene (Fe‐N‐G), as well as iron‐ and nitrogen‐functionalized oxidized graphene (Fe‐N‐Gox) catalysts were synthesized as non‐noble metal electrocatalysts for oxygen reduction reaction (ORR). The physical properties of the resultant catalysts were characterized using nitrogen adsorption measurements, X‐ray diffraction, Raman and X‐ray photoelectron spectroscopies and transmission electron microscopy. Subsequently, ORR activities of the catalysts were determined electrochemically using a conventional three‐electrode cell via cyclic voltammetry with a rotating disc electrode, the results of which indicated that the synthesized catalysts had a marked electrocatalytic activity towards ORR in acid media. Among the synthesized catalysts, that functionalized using 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine as nitrogen source had the highest electrocatalytic activity with the highest onset potential (0.98 V/SHE) and limiting current density (5.12 mA cm−2). The findings are particularly important to determine a non‐precious metal catalyst for ORR activity in fuel cells.  相似文献   

5.
N-doped graphene has been extensively explored because of their intriguing properties. However, most of the conventional heat-processed N-doped graphene (HNG) suffer from the poor hydrophilic property and low electric conductivity when using electrode materials. Herein, we present a facile solution-processed strategy to fabricate N-doped graphene through electrochemical exfoliation of graphite in inorganic electrolyte solution. The resulting electrochemically exfoliated N-doped graphene (ENG) has high level of nitrogen (7.9 at.%) and oxygen (16.5 at.%), moreover, excellent electric conductivity (19 s cm?1). As a binder-free electrode material for oxygen reduction reaction (ORR), ENG exhibits much better electroactivity than HNG and electrochemically exfoliated graphene (EG), moreover, much better methanol tolerance and long-term durability than that commercial Pt/C catalyst. The results provide new sights into scalable production of noble metal-free catalyst towards ORR.  相似文献   

6.
以氧化石墨烯(GO)为原料、丙酮肟(DMKO)为还原剂和氮掺杂剂,采用化学还原法制备了不同氮掺杂含量的石墨烯(NG).利用场发射透射电子显微镜(FETEM)、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、zeta电位和纳米粒度分析、循环伏安(CV)和旋转圆盘电极(RDE)等手段对材料的形貌、结构、成分和电化学性质进行表征.结果显示:DMKO能有效地还原GO,且通过调节GO与DMKO的质量比,可以得到不同还原效果的NG,其氮含量范围为4.40%-5.89%(原子分数);GO与DMKO的质量比为1:0.7时制备的氮掺杂石墨烯(NG-1)在O2饱和0.1 mol·L-1KOH溶液中对氧还原反应(ORR)的电催化性能最佳,其ORR峰电流为0.93 mA·cm-2,电子转移数为3.6,这归因于其较高含量的吡啶-N增加了材料的ORR活性位点.此外,石墨化-N由于其较高的电子导电性倾向于产生较高的氧还原峰电流,而吡啶-N较低的超电势倾向于产生较正的氧还原峰电位.与商用Pt/C相比,该材料展现出了优异的抗CH3OH"跨界效应"的特性.  相似文献   

7.
Sulfur doped reduced graphene oxide (S-rGO) is investigated for catalytic activity towards the oxygen reduction reaction (ORR) in acidic and alkaline electrolytes. X-ray photoelectron spectroscopy shows that sulfur in S-rGO is predominantly integrated as thiophene motifs within graphene sheets. The overall sulfur content is determined to be approximately 2.2 at.% (elemental analysis). The catalytic activity of S-rGO towards the ORR is investigated by both rotating disc electrode (RDE) and polymer electrolyte fuel cell (PEFC) measurements. RDE measurements reveal onset potentials of 0.3 V and 0.74 V (vs. RHE) in acidic and alkaline electrolyte, respectively. In a solid electrolyte fuel cell with S-rGO as cathode material, this is reflected in an open circuit voltage of 0.37 V and 0.78 V and a maximum power density of 1.19 mW/cm2 and 2.38 mW/cm2 in acidic and alkaline polymer electrolyte, respectively. This is the first report investigating the catalytic activity of a sulfur doped carbon material in both acidic and alkaline liquid electrolyte, as well as in both proton and anion exchange polymer electrolyte fuel cells.  相似文献   

8.
目前Pt基催化剂被公认为是最高效的氧还原催化剂.我们采用了密度泛函理论研究了Pt掺杂5种不同氧化石墨烯和完美石墨烯在酸性环境中的氧还原反应机理,计算了氧还原反应中间体O2、O、OOH、OH、H2O和H2O2在不同掺杂石墨烯上的吸附性能、反应步骤与反应相对能量变化.结果表明,氧化石墨烯在O2的活化、中间体吸附、掺杂难度(缺陷形成能)、能带带隙以及在反应中相对能量的降低都优于完美石墨烯,我们的工作将有助于为将来在实验中选择和合成氧还原催化剂提供一定的理论指导意义.  相似文献   

9.
以氧化石墨烯(GO)为原料、丙酮肟(DMKO)为还原剂和氮掺杂剂,采用化学还原法制备了不同氮掺杂含量的石墨烯(NG). 利用场发射透射电子显微镜(FETEM)、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、zeta 电位和纳米粒度分析、循环伏安(CV)和旋转圆盘电极(RDE)等手段对材料的形貌、结构、成分和电化学性质进行表征. 结果显示:DMKO能有效地还原GO,且通过调节GO与DMKO的质量比,可以得到不同还原效果的NG,其氮含量范围为4.40%-5.89%(原子分数);GO与DMKO的质量比为1:0.7时制备的氮掺杂石墨烯(NG-1)在O2饱和0.1 mol·L-1 KOH溶液中对氧还原反应(ORR)的电催化性能最佳,其ORR峰电流为0.93 mA·cm-2,电子转移数为3.6,这归因于其较高含量的吡啶-N增加了材料的ORR活性位点. 此外,石墨化-N由于其较高的电子导电性倾向于产生较高的氧还原峰电流,而吡啶-N较低的超电势倾向于产生较正的氧还原峰电位. 与商用Pt/C相比,该材料展现出了优异的抗CH3OH“跨界效应”的特性.  相似文献   

10.
This study develops a powerful strategy for fabricating the nitrogen-doped graphene sheets with good crystallinity, high specific surface area, and high percentages of pyridinic/graphitic-nitrogen structures. Due to the specified N-doping structures and high specific surface area of 719 m2 g− 1, our N-doped graphene sheets show an excellent electrocatalytic activity for the oxygen reduction reaction (ORR).  相似文献   

11.
The development of nonprecious catalyst for oxygen reduction reaction (ORR) is important for the commercialization of the alkaline fuel cells (AFCs). Herein, we prepared a kind of Co-based nanoparticles (NPs) with a core-shell (Co@CoO) structure supported on the N-doped graphene (Co@CoO/NG) as an efficient ORR catalyst via simply pyrolyzing the ZIF-67 anchored on the synthesized graphene oxide (GO). The catalytic activity for ORR of the obtained Co@CoO/NG is comparable with the state-of-art Pt/C catalyst in terms of the onset and half-wave potential in the alkaline solution. In addition, the Co@CoO/NG exhibited an excellent ORR durability and antimethanol activity compared to the commercial Pt/C. This research would provide a simple strategy to prepare the high-performance nonprecious metal-based catalysts for AFCs.  相似文献   

12.
Self-polymerization of dopamine, in either an alkaline or an acidic environment, to form polydopamine is a material-independent surface coating technique, influencing almost all areas of material science and engineering. We demonstrated a simple, two-step method to prepare in-situ silver or silver-copper alloy nanoparticles on the surface of reduced graphene oxides, using polydopamine formed in an acidic medium. The acidic medium was created by a nonthermal micro-hollow cathode discharge device and the device was operated at atmospheric pressure, using air as the working gas. The nanocomposites were characterized with SEM, EDX, ICP-OES, and FT-IR; the electrochemical catalytic activity was tested using rotating disk electrode. The characterization methods confirmed the formation of the nanocomposites, which contain polydopamine, reduced graphene oxides, and metal nanoparticles or nanoalloy. We hypothesized that by alloying silver and copper on the surface of reduced graphene oxides, the oxygen reduction reaction (ORR) catalytic activity of the nanocomposites will be enhanced through both alloying and substrate effects. The size range of the nanoparticles is between 10 nm and 15 nm. We find that both the silver and alloy samples catalyze the ORR via a four-electron mechanism. The alloy nanocomposites showed better performance indicator parameters than the silver one, in both mass activity and kinetic current density. This preparation method has paved a new way of synthesizing an ORR catalyst in an environmentally friendly manner.  相似文献   

13.
High‐performance non‐noble electrocatalysts for oxygen reduction reaction (ORR) are the prerequisite for large‐scale utilization of fuel cells. Herein, a type of sandwiched‐like non‐noble electrocatalyst with highly dispersed FeNx active sites embedded in a hierarchically porous carbon/graphene heterostructure was fabricated using a bottom‐up strategy. The in situ ion substitution of Fe3+ in a nitrogen‐containing MOF (ZIF‐8) allows the Fe‐heteroatoms to be uniformly distributed in the MOF precursor, and the assembly of Fe‐doped ZIF‐8 nano‐crystals with graphene‐oxide and in situ reduction of graphene‐oxide afford a sandwiched‐like Fe‐doped ZIF‐8/graphene heterostructure. This type of heterostructure enables simultaneous optimization of FeNx active sites, architecture and interface properties for obtaining an electron‐catalyst after a one‐step carbonization. The synergistic effect of these factors render the resulting catalysts with excellent ORR activities. The half‐wave potential of 0.88 V vs. RHE outperforms most of the none‐noble metal catalyst and is comparable with the commercial Pt/C (20 wt %) catalyst. Apart from the high activity, this catalyst exhibits excellent durability and good methanol‐tolerance. Detailed investigations demonstrate that a moderate content of Fe dopants can effectively increase the intrinsic activities, and the hybridization of graphene can enhance the reaction kinetics of ORR. The strategy proposed in this work gives an inspiration towards developing efficient noble‐metal‐free electrocatalysts for ORR.  相似文献   

14.
A novel high-performance non-noble metal electrocatalyst for the oxygen reduction reaction (ORR) was fabricated by anchoring cobalt tetraferrocenylporphyrin (CoFcP) onto poly(sodium-p-styrenesulfonate) modified graphene (PSS-Gr) through solvothermally assisted π–π assembling method. The morphology of the assembled composite was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The interactions between CoFcP moieties and graphene sheets were confirmed by UV–Vis absorption spectroscopy and X-ray photoelectron spectroscopy. The electrocatalytic properties of the CoFcP/PSS-Gr catalyst towards the oxygen reduction reaction were assessed using rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) measurements in both alkaline and acidic media. In addition, cyclic voltammetry and chronoamperometric measurements were utilized to evaluate the catalytic activity and stability of the CoFcP/PSS-Gr composite in alkaline solution. The results showed that CoFcP supported on graphene exhibited an outstanding electrocatalytic performance towards the ORR comparable with commercial Pt/C catalyst in alkaline media, such as high onset potential (0.889 V vs. reversible hydrogen electrode, RHE), half wave potential (0.789 V vs. RHE), better tolerance to methanol, excellent stability (84.1 %, retention after 10000 s), and efficient four-electron pathway. Moreover, the proposed hybrid presented excellent catalytic activity in terms of onset potential (0.72 V vs. RHE) and high-electron transfer number compared with Pt/C in acidic media.  相似文献   

15.
Graphene research is currently at the frontier of electrochemistry. Many different graphene‐based materials are employed by electrochemists as electrodes in sensing and in energy‐storage devices. Because the methods for their preparation are inherently different, graphene materials are expected to exhibit different electrochemical behaviors depending on the functionalities and density of defects present. Electrochemical treatment of these “chemically modified graphenes” (CMGs) represents an easy approach to alter surface functionalities and consequently tune the electrochemical performance. Herein, we report a preliminary electrochemical characterization of four common chemically modified graphenes, namely: graphene oxide, graphite oxide, chemically reduced graphene oxide, and thermally reduced graphene oxide. These CMGs were compared with graphite as a reference material. Cyclic voltammetry was used to ascertain the chemical functionalities present and to understand the potential ranges in which the materials were electroactive. Electrochemical treatment with either an oxidative or a reductive fixed potential were then carried out to activate these chemically modified graphenes. The effects of such electrochemical treatments on their electrocatalytic properties were then investigated by cyclic voltammetry in the presence of well‐known redox probes, such as [Fe(CN)6]4?/3?, Fe3+/2+, [Ru(NH3)6]2+/3+, and ascorbic acid. Thermally reduced graphene oxide exhibited the best electrochemical behavior amongst all of the CMGs, with the fastest rate of heterogeneous electron transfer (HET) and the lowest overpotentials. These findings will have far‐reaching consequences for the evaluation of different CMGs as electrode materials in electrochemical devices.  相似文献   

16.
Metal-free electrocatalysts for oxygen reduction reaction (ORR) are key to the development of efficient, durable, and low-cost alternatives to noble-metal-based electrocatalysts in fuel cell cathodes. In recent years, many efforts are directed to the metal-free catalyst based on heteroatom-doped graphene. In this work, we demonstrate that the graphene surface can be converted into the catalyst for the oxygen reduction by chemical functionalization. In this context, we first synthesized malononitrile-functionalized graphene oxide. Amidoximation of nitrile group and reduction in graphene oxide were then carried out by hydroxylamine in one step. The electrochemical behavior of functionalized graphene-modified electrode for the reduction in oxygen was studied. The results showed that the electrocatalyst fabricated by this method exhibited striking catalytic activities in alkaline solution. In alkaline solution, this catalyst showed a competitive activity to the commercial Pt catalyst via four-electron transfer pathway with better ORR selectivity and stability. In addition, this metal-free electrocatalyst exhibited tolerance to methanol crossover effect. Based on its outstanding performance, this functionalized graphene electrocatalyst showed the promising prospect of a metal-free catalyst for fuel cell with much lower cost than currently used Pt/C catalyst.  相似文献   

17.
采用微波法在氨气气氛下快速加热石墨烯(G)制备了含氮量在4.05 wt%-5.47 wt%的掺氮石墨烯(NG). 将上述的掺氮石墨烯用作碱性电解质条件下的氧还原电催化剂,起始还原电势为0.17 V(vs SHE),接近商用碳载铂催化剂的0.21 V(vs SHE). 采用透射电子显微镜、拉曼光谱和X射线光电子能谱研究了掺氮石墨烯的形貌、结构和掺杂氮原子的键合方式. 结果发现,掺氮石墨烯的氧还原起始电位随着石墨氮原子含量的提高而上升,说明石墨类型的氮含量是影响其氧还原催化活性的关键因素. 实验结果表明,微波法快速制备的掺氮石墨烯在碱性条件下表现出较高的氧还原催化活性,具有作为碱性燃料电池阴极催化剂的潜力.  相似文献   

18.
Oxygen reduction reaction (ORR) catalysts are the heart of eco-friendly energy resources particularly low temperature fuel cells. Although valuable efforts have been devoted to synthesize high performance catalysts for ORR, considerable challenges are extremely desirable in the development of energy technologies. Herein, we report a simple self-polymerization method to build a thin film of dopamine along the tubular nanostructures of multi-walled carbon nanotubes (CNT) in a weak alkaline solution. The dopamine@CNT hybrid (denoted as DA@CNT) reveals an enhanced electrocatalytic activity towards ORR with highly positive onset potential and cathodic current as a result of their outstanding features of longitudinal mesoporous structure, high surface area, and ornamentation of DA layers with nitrogen moieties, which enable fast electron transport and fully exposed electroactive sites. Impressively, the as-obtained hybrid afford remarkable electrochemical durability for prolonged test time of 60,000 s compared to benchmark Pt/C (20 wt%) catalyst. Furthermore, the developed DA@CNT electrode was successfully applied to access the quality of antiviral drug named Valacyclovir (VCR). The DA@CNT electrode shows enhanced sensing performance in terms of large linear range (3–75 nM), low limit of detection (2.55 nM) than CNT based electrode, indicating the effectiveness of the DA coating. Interestingly, the synergetic effect of nanostructured DA and CNT can significantly boost the electronic configuration and exposure level of active species for ORR and biomolecule recognition. Therefore, the existing carbon-based porous electrocatalyst may find numerous translational applications as attractive alternative to noble metals in polymer electrolyte membrane fuel cells and quality control assessment of pharmaceutical and therapeutic drugs.  相似文献   

19.
The development of efficient electrocatalysts for oxygen reduction reaction (ORR) is of importance for fuel cells and metal-air batteries. Herein, three-dimensional nitrogen and phosphorous co-doped graphene aerogel (NPGA) was prepared via the pyrolysis of polyaniline (PANi) coated graphene oxide aerogel synthesized by oxidative polymerization of aniline on graphene oxide (GO) sheets in the presence of phytic acid. The uniform coating of PANi thin layer on the surface of GO sheets enables the formation of highly porous composite aerogel of PANi and GO. The subsequent thermal treatment is able to prepare the porous NPGA due to the carbonization of PANi and phytic acid as nitrogen and phosphorous resources. When used as electrocatalysts, the as-prepared NPGA electrocatalysts exhibited good catalytic activity to ORR via an efficient four-electron pathway with good stability, benefiting from the highly porous structure and the heteroatom co-doping. More importantly, Zn-air batteries operated in ambient air have been fabricated by coupling a Zn plate with the NPGA electrocatalyst in an air electrode, demonstrating the maximal power density as high as ~260 W/g and a good long-term stability with slightly potential decay for over 450 h. The facile method for preparing efficient carbon based ORR electrocatalysts would generate other potential applications including fuel cells and others.  相似文献   

20.
Developing highly efficient, cost-saving, and durable multifunctional electrocatalysts for oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) continues to be a significant challenge in the energy field. In this work, we decide to prepare an unusual multifunctional electrocatalyst, such as icosahedral palladium nanocrystals (PdNCs) encapsulating on N–MoO2–Mo2C half-hollow nanotube (HHNT) heterointerface, using an in-situ chemical reaction and following sonic probe irradiation method. All the experiments demonstrate that special defect-enriched heterointerfaces N–MoO2–Mo2C supported Pd nanocomposite can greatly improve the ORR activity (Eonset = 1.01 V and E1/2 = 0.90 V) with good stability, outstanding HER (η10 = 65 mV) and OER (η10 = 180 mV) performances than those of commercial precious electrocatalysts (Platinum on carbon [Pt/C] and ruthenium oxide [RuO2]). The overall water splitting electrolyzer fabricates by Pd/N–MoO2–Mo2C as both anode and cathode electrodes to achieve a current density of 10 Ma/cm2 at a cell voltage of 1.56 V, which surpasses the most recent reported electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号