首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Macroscopic compass-like magnetic alignment at low magnetic fields is natural for ferromagnetic materials but is seldomly observed in paramagnetic materials. Herein, we report a “paramagnetic compass” that magnetically aligns under ∼mT fields based on the single-crystalline framework constructed by lanthanide ions and organic ligands (Ln-MOF). The magnetic alignment is attributed to the Ln-MOF's strong macroscopic anisotropy, where the highly-ordered structure allows the Ln-ions’ molecular anisotropy to be summed according to the crystal symmetry. In tetragonal Ln-MOFs, the alignment is either parallel or perpendicular to the field depending on the easiest axis of the molecular anisotropy. Reversible switching between the two alignments is realized upon the removal and re-adsorption of solvent molecules filled in the framework. When the crystal symmetry is lowered in monoclinic Ln-MOFs, the alignments become even inclined (47°-66°) to the field. These fascinating properties of Ln-MOFs would encourage further explorations of framework materials containing paramagnetic centers.  相似文献   

2.
《Solid State Sciences》2012,14(10):1486-1491
Zn0.8−4xHoxOy (0.05 ≤ x ≤ 0.10) diluted magnetic semiconductors were prepared by the solid state reaction method. We have studied the structural properties of the samples by using the XRD, SEM, and EDX techniques. The SEM results clearly demonstrate that Ho3+ ions are quite well substituted for Zn2+ in the ZnO lattice, and the grains of the samples are very well connected to each other and tightly packed. From the XRD and EDX spectra of the samples, it has been concluded that the substitution of Ho causes no change in the hexagonal wurtzite structure of ZnO. According to our M–H and M–T measurements paramagnetism has been observed for all the samples from our attainable lowest temperature of 10 K to 300 K. Furthermore, the trend of the AC-susceptibility (χ) versus temperature curves, measured under an AC-magnetic field of 10 Oe, also support our conclusion about the paramagnetic contribution in the Zn0.8−4xHoxOy compounds explored in this study. In order to clearly see the paramagnetic contribution, and whether there is also a ferromagnetic or antiferromagnetic contribution or not the inverse susceptibility (1/χ) against temperature curves are also plotted. Those curves indicate that, the substitution of Ho into the ZnO compound causes, in addition to the paramagnetism, a weaker antiferromagnetic (AFM) interaction.  相似文献   

3.
Single crystals of NaLnGeO4 (Ln = Sm, Eu, Gd) were grown out of a molten sodium hydroxide flux, and their crystal structures were determined by single crystal X-ray diffraction. The lanthanide containing germanates crystallize in the orthorhombic space group of Pnma, and exhibit a complex three-dimensional structure consisting of corner- or edge-shared LnO6, GeO4, and NaO6 polyhedra. UV–vis diffuse reflectance spectra indicated that the reported oxides are insulating materials with wide band gaps. The magnetic susceptibility data shows paramagnetic behavior. For the NaEuGeO4 and NaTbGeO4 compositions intense room temperature photoluminescence was observed.  相似文献   

4.
A paramagnetic ferrocenium-based ionic liquid that exhibits a magnetic memory effect coupled with a liquid-solid phase transformation has been developed. Based on field alignment of the magnetically anisotropic ferrocenium cation, the magnetic susceptibility in the solid state can be tuned by the weak magnetic fields (<1 T) of permanent magnets.  相似文献   

5.
We present an introduction to the workings, units of measure, and general properties of magnetic materials. This is intended as a “primer to interpretation of magnetic data” for those who are entering the field, or those who are encountering magnetic measurements in the literature. We expect this work will serve as an initial guide to the reader to familiarize them with the basics in the hope that those working in the field of magnetochemistry will wish to explore additional, more detailed literature as their specific investigations demand. Topics covered include: magnetic fields and units (SI and cgs), paramagnetism (magnetization and magnetic susceptibility), Curie and Curie–Weiss behavior, magnetic exchange interactions, magnetic anisotropy, dimeric systems and exchange-coupled networks (including chains, ladders, and layers), and long-range order.  相似文献   

6.
Genuine organic anion-radical salt (N-Me-2,6-di-Me–Py)(TCNQ)2 with pyridine-based cation was synthesized and its crystal structure was resolved. The DC magnetic susceptibility was measured in temperature range from 2 K to 300 K in magnetic fields 10 mT, 100 mT and 1 T. Zero field cooling (ZFC) and field cooling (FC) modes were used. The results were studied in terms of one-dimensional magnetic models and we have found that the most suitable of them is an antiferromagnetic linear Heisenberg S = 1/2 system with small amount of free spins. An additional peak observed at low temperatures can be explained by an interchain coupling between free chain-end spins.  相似文献   

7.
New electronic and magnetic properties are induced by the adsorption of closed packed monolayers on solid substrates. For many thiolated molecules self-assembled on gold, a surprisingly large paramagnetism is observed. In the case where the layers are made from chiral molecules, in addition an unexpectedly large electronic dichroism is observed, which manifests itself as spin specific electron transmission. This dichroism was observed for monolayers made from polyalanine and from DNA. Self-assembled monolayers of double-stranded DNA oligomers on gold interact with polarized electrons similarly to a strong and oriented magnetic field. The direction of the field for right-handed DNA is away from the substrate. Moreover, the layer shows very high paramagnetic susceptibility. Interestingly, thiolated single-stranded DNA oligomers on gold do not show this effect. All the observations can be rationalized by assuming organization induced charge transfer between the substrate and the organic layer. The charge transfer results in spin alignment of the transferred electrons/holes. While for achiral molecules the spin alignment varies among the domains, in the case of monolayer made from chiral molecules the alignment is the same across the entire sample. When magnetic field is applied, large magnetic moment is observed that results from orbital magnetism.  相似文献   

8.
Magnetic susceptibility measurements on conducting polyaniline and polypyrrole nanostructures with different dopant type and doping level as functions of temperature and magnetic field are reported. The susceptibility data cannot be simply described as Curie-like susceptibility at lower temperatures and temperature-independent Pauli-like susceptibility at higher temperatures; some unusual transitions are observed in the temperature dependence of susceptibility, for example, paramagnetic susceptibility decreases gradually with lowering temperature, which suggests the coexistence of polarons and spinless bipolarons and possible formation of bipolarons with changing temperature or doping level. In particular, it is found that the direct current magnetic susceptibilities are strongly dependent on applied magnetic field, dopant type, and doping level.  相似文献   

9.
The Knight shift of27Al in small Al particles was measured in wide ranges of temperature and magnetic field, in order to study the magnetic field dependence of the universarity class of random hamiltonian governing the conduction electrons. The samples with diameters 80 A and 27 A were investigated. We observed the change in the symmetry of the hamiltonian in high magnetic field as the recovery of the spin paramagnetic susceptibility in 80 A particles.  相似文献   

10.
We report the preparation, crystallization, and solid-state characterization of cycloheptyl and cyclooctyl-substituted spirobiphenalenyl radicals and the corresponding sigma-dimer of the cyclooctyl derivative. The crystal structure shows that the cycloheptyl radical (9) is monomeric in the solid state, with the molecules packed in an unusual one-dimensional (1-D) fashion that we refer to as a pi-chain structure, whereas the cyclooctyl variant exists both as pi-dimer 10 and sigma-dimer 10d. The neutral radical 9 shows the temperature-independent Pauli paramagnetism characteristic of a metal with a magnetic susceptibility, chip approximately 4.5x10(-4) emu/mol and is assigned a resonating valence bond (RVB) ground state. We highlight the relationship between the magnetic properties of the Heisenberg antiferromagnet and the RVB ground state in 1-D and further elucidate the electronic structure of this new class of compounds. Magnetic susceptibility measurements show that 10 is a diamagnetic pi-dimer, whereas 10d is a diamagnetic sigma-dimer. Extended Hückel calculations for 9 indicate that the solid is a one-dimensional organic metal with a bandwidth of about 0.4 eV. Pressed pellet conductivity measurements indicate values of sigmaRT=1.5x10(-3) S/cm for compound 9 and sigmaRT=1.0x10(-6) S/cm for compound 10. The structural results and transport properties are discussed in the light of extended Hückel theory band structure calculations and DFT investigations of the electronic structure of related compounds.  相似文献   

11.
Tetraborides of chromium and manganese exhibit an unusual boron‐atom framework that resembles the hypothetical tetragonal diamond. They are believed to be very hard. Single crystals of MnB4 have now been grown. The compound crystallizes in the monoclinic crystal system (space group P21/c) with a structure that has four crystallographically independent boron‐atom positions, as confirmed by 11B MAS‐NMR spectroscopy. An unexpected short distance between the Mn atoms suggests a double Mn–Mn bond and is caused by Peierls distortion. The structure was solved using group‐subgroup‐relationships. DFT calculations indicate MnI centers and paramagnetism, as confirmed by magnetic measurements. The density of states shows a pseudo‐band gap at the Fermi energy and semiconducting behavior was observed for MnB4.  相似文献   

12.
研究了与磁场强度相关的手性丙氨酸晶体的电子轨道运动的磁性质. 根据丙氨酸单晶的两性离子(+NH3-C(CH3)H-CO2-)模型的手性和蛋白质中肽键晶格结构的螺旋性, 当外加磁场为5 T, 磁场方向平行于丙氨酸晶轴(c)的极性N+H…O-氢键, 观察到D-丙氨酸晶格中, 氢原子的电子自旋翻转, 在297.6 K直接突现顺磁性. L-丙氨酸则先发生电子自旋转向, 然后在303.9 K突现顺磁性. 实验发现: 外加强磁场可以分裂手性丙氨酸晶格中氢键的简并顺磁态, 并测出能差. 本文进一步证明了准一维极性N+H…O-氢键在晶格中可以发生自旋-轨道分离, 表现出一维物理的基本特征.  相似文献   

13.
《Solid State Sciences》2001,3(5):559-568
The new ternary selenide Cr4TiSe8 crystallises in the V5S8 type structure. The determination of the metal atom distribution over the three crystallographically independent sites using neutron scattering experiments reveals that the Ti atoms exclusively occupy the sites within the full metal atom layers with a pronounced preference for one of the two possible sites. The magnetic properties in the high temperature region exhibit Curie–Weiss behaviour with a paramagnetic Curie temperature θ of −300(5) K indicating strong antiferromagnetic exchange interactions. Between about 100 and 300 K the susceptibility data pass a very broad maximum and a qualitatively explanation is presented that base on antiferromagnetic exchange interactions between Cr atoms forming linear trimers, dimers, or Cr atoms being isolated. Below about 50 K the zero field cooled and field cooled susceptibility curves diverge suggesting spin glass behaviour. In the low temperature neutron diffraction patterns no additional peaks are observed which gives further evidence for the occurrence of a spin glass. Below 120 K the background of the diffraction patterns becomes modulated due to the short range magnetic interactions with sizes of the domains ranging from about 15 to 38 Å. Low temperature single crystal X-ray investigations show a remarkable change of the contraction of the lattice parameters below about 220 K that may be due to the onset of the strong magnetic exchange interactions.  相似文献   

14.
Electron spin resonance (ESR) observations of the solid-state thermal polymerization of bis(p-toluene sulphonate) of 2,4-hexadiyne-1, 6-diol at 60°C, 70°C, and 80°C are reported. The weak paramagnetism observed in polycrystalline samples is interpreted in terms of departures of the polymer chain from an equilibrium conformation. Decomposition occurs at 70°C and 80°C during the final phase of polymerization producing additional paramagnetic centers. Lineshape parameters measured during polymerization show changes which we attribute to changes in the delocalization and mobility of the paramagnetic center. We conclude that the nature of paramagnetism in crystalline conjugated diacetylene polymers is a chain defect property characteristic of interband electronic states close to the valence band.  相似文献   

15.
TiO2 nanocrystals doped with 1%, 5% and 10% Co/TiO2 and 10% M (M=Fe, Mn and Ni) were prepared by the sol–gel technique and characterized using X-ray diffraction and SQUID. The as-prepared samples are found to be paramagnetic at room temperature, with the magnetic susceptibility following the Curie–Weiss law in the investigated range of 2–370 K. However, transformation from paramagnetism to room-temperature ferromagnetism (RTFM) for the 5% Co/TiO2 was observed by hydrogenating the sample at 573 K while the 1% sample remained paramagnetic. As the percentage of Co was increased from 5% to 10% the Curie temperature increased from 390 K to 470 K determined via extrapolation. Transformation from paramagnetism to room-temperature ferromagnetism (RTFM) was also observed by hydrogenation of 10% Fe/TiO2 at 573 K for 6 h. X-ray diffraction of the hydrogenated sample shows only single phase TiO2 structure suggesting that the observed RTFM may be intrinsic but magnetic studies may suggest the possibility of Fe nanoparticles.  相似文献   

16.
We study crystallization of paramagnetic beads in a magnetic field gradient generated by one-dimensional nanomagnets. The pressure in such a system depends on both the magnetic forces and the hydrodynamic flow, and we estimate the flow threshold for disassembling the crystal near the magnetic potential barrier. A number of different defects have been observed which fluctuate in shape or propagate along the crystal, and it is found that the defect density increases away from the nanomagnet. We also study the melting of the crystal/fluid system after removal of the nanomagnet and demonstrate that the bond-oriental order parameter decreases with time. The nanomagnet can be moved in a controlled manner by a weak external magnetic field, and at sufficiently large driving velocities we observe self-healing crack formation characterized by a roughening of the lattice as well as gap formation. Finally, when confined between two oscillating nanomagnets, the colloidal crystal is shown to break up and form dipolar chains above a certain oscillation frequency.  相似文献   

17.
Molecular order in an amorphous polymer with anisotropic magnetic susceptibility is altered by applying external magnetic fields. Disks of atactic polystyrene (a‐PS) are prepared by solvent casting outside or inside a magnet. The effect of the magnetic field on the polymer samples is investigated by magnetic levitation and solid state NMR spectroscopy. Magnetic levitation of the a‐PS disks shows that the orientation of disk symmetry axis with respect to the magnetic field gradient depends on the magnitude and direction of the applied field during casting. Similarly, carbon‐13 two‐dimensional cross‐polarization/magic angle spinning rotor‐synchronized NMR measurements in these samples show modulation patterns of the spinning side bands only on disks prepared in the presence of a magnetic field. These findings suggest that macromolecular order could be induced in a fluid or fluid–solid phase transition with cooperative segmental motions reorienting the diamagnetic susceptibility tensor to minimize the magnetic contribution to free energy of the sample. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1009–1015, 2010  相似文献   

18.
《Chemical physics letters》1986,125(3):290-294
A single crystal of europium gallium garnet has been grown by the flux method and the experimental variation with temperature of its paramagnetic susceptibility has been studied up to 600 K. The crystal field parameters have been calculated for D2 symmetry. From the derived wavefunctions, the magnetic susceptibility versus temperature was calculated. The experimental and simulated susceptibilities are in good agreement.  相似文献   

19.
An interesting series of iron (III) complexes with naphthoquinone-thiosemicarbazones are synthesized and physico-chemically characterized by elemental analysis, UV-vis, IR, EPR and magnetic susceptibility measurements. They possess a cationic octahedral [FeL2]+ species and a tetrahedral [FeCl4]- anion and exhibit unusual spin-mixed states involving high-spin and low-spin ferric centers as revealed from magnetic behavior with significant amount of exchange interactions mediated by intermolecular associations. The magnetic susceptibility data is fitted with S1=5/2 and S2=1/2 Heisengberg's exchange coupled model; H=-2JS1S2 and the magnetic exchange interactions are found to be of the order of -13.6 cm-1 indicating the moderate coupling between two paramagnetic centers present in different chemical and structural environment. The presence of spin-paired iron (III) cation having dxz2dxz2dxz1 ground state is revealed from the EPR spectra with three prominent peaks while the high-spin tetrahedral iron (III) anion exhibits characteristics g=4 signal whose intensity increases with lowering the temperature suggesting its influence on the magnetic properties of the complex molecule. FTIR measurements indicate tridentate ONS donor systems involving quinone/hydroxyl oxygen, imine/hydrazinic nitrogen and thione/thiol sulfur atoms as binding sites for naphthoquinone-thiosemicarbazones.  相似文献   

20.
We apply ac and dc magnetic fields simultaneously in orthogonal directions to each other to a solution, in which paramagnetic microparticles are dispersed, and show that complex secondary structures composed of oscillating chain clusters, that is, long linear clusters interconnected by T-, L-, and criss-cross-junctions, are self-assembled. Disklike clusters are formed at some junctions and the number of disklike clusters increases as the frequency of the ac magnetic field increases. We finally show that the angle between long linear clusters can be altered by changing the ratio of the intensities of the ac and dc magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号