共查询到20条相似文献,搜索用时 15 毫秒
1.
LaAlO3 single crystals grown under hydrothermal conditions and co-doped with Ce and Dy atoms have been recently reported to show high thermoluminescent (TL) outputs for ultraviolet (UV) radiation fields (Oliveira et al., 2011). Due to this property, they have been considered for further investigation for applications in UV dosimetry. Encouraged by these results, we start an investigation about the TL properties of polycrystalline LaAlO3 grown by an alternative method. In this method, equimolar amounts of Al2O3 and La2O3 are sintered, producing polycrystalline LaAlO3 powder. Polycrystals doped with amounts of carbon ranging from 0.0 to 5.0 at.% were synthesized by sintering under hydrogen reducing atmosphere. After irradiation with a UV commercial lamp, the best TL outputs were observed for the undoped sample. The recorded TL glow curves show a main TL peak centered at 175 °C. The TL emission spectrum show a broad emission peak centered at 634 nm and another three narrow peaks centered at 724 nm, 738 nm and 754 nm, respectively. The undoped material show a huge TL output response for UV spectral irradiances ranging from 0.04 to 1.68 mJ cm−2 that can be fitted by a 2nd order polynomial regression. The investigation demonstrates that undoped polycrystalline LaAlO3 crystals sintered under reducing atmosphere are very attractive to be investigated as high sensitivity ultraviolet TL dosimeters. 相似文献
2.
Thermoluminescence (TL) glow curves of LiF:Mg,Cu,Si were deconvoluted with the introduction of enhanced physical model which envisages that both electrons and holes, produced by ionization radiation and trapped at the respective traps, can be thermally released into the conduction and the valence band, respectively and the holes may also radiatively recombine with electrons at the electron recombination centers. The model is more generalized than the ordinary trap interaction model which only permits the traffic of electrons through the conduction band. An effective numerical analysis method was developed to calculate the glow curve to be compatible with the measured curves. The validity of the numerical method was verified through artificially generated TL glow curves for a wide range of trap parameters. In order to identify TL kinetics of LiF:Mg,Cu,Si with higher accuracy, its glow curves were deconvoluted for two more generalized models, namely, the Schön–Klasens model and the Chen–Pagonis–Lawless model as well as the ordinary trap interactive model. The parameters in the more generalized multi-trap multi-recombination center (MTMR) model were found to be consistent with the quasi-static approximation(QSA) method. 相似文献
3.
Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering this dose in tandem with the physical characteristics of the radioactive material housed within the container, this method can provide enhanced pathway information for interdicted radioactive samples. Thermoluminescence (TL) dosimetry was used to measure ionizing radiation dose effects on stock borosilicate glass. Differences in TL glow curve shape and intensity were observed for glasses from different geographical origins. The different TL signatures strongly correlated with the concentration of alkaline earth metals and the ratio of sodium to the total amount of alkali metal present in the borosilicate glass. 相似文献
4.
G. Kitis 《辐射效应与固体损伤》2013,168(7):285-296
The aim of this article is to give some useful expressions for fading correction in practical situations as they can be encountered in radiation protection dosimetry monitoring, i.e. personal, environmental and clinical dosimetry. They are obtained considering the general case in which, for both first and second-order kinetics, during the experimental period of time two effects are in competition between them: one is the trapping rate due to the irradiation, the second is the detrapping rate which takes place at the same time, owing to thermal fading. Various practical situations are taken into consideration. 相似文献
5.
The thermoluminescence properties of white (WJ) and green (GJ) mineral jadeite have been investigated with a view to be of use in high dose dosimetry. WJ presented glow curve with 110, 190 and 235 °C peaks. All these peaks grow with radiation dose. The glow curve of GJ the green variety has TL peaks at 140, 210, 250 and 330 °C. We also observed that there is a difference between the TL glow curves for both samples, irradiated with gamma and electron. As expected the green jadeite can be used for measurement of dose as high as 50 kGy. 相似文献
6.
Functionalized polymers were prepared by radiation-induced graft copolymerization of binary monomer system acrylic acid/acrylamide (AAc/AAm) onto low-density polyethylene (LDPE) and polypropylene (PP) films using direct radiation-grafting technique. Sulfonation was carried out for the prepared grafted copolymers using concentrated sulfuric acid (97%) at 60 °C for 15 min. The grafted and sulfonated grafted films found to have good properties such as thermal stability and hydrophilic properties. The sulfonated grafted films found to have a better hydrophilic character than the grafted ones due to ionic character resulted by this conversion. The thermoluminescence (TL) characteristics of a set of grafted and sulfonated films have been studied with regard to their use as off-line dosimeters in radiotherapy. The structural characterization has been performed by means of infrared spectroscopy. Their TL responses have been tested with radiotherapy beams of 60Co photons in the dose range 0.1–7 Gy. The dosimetric characterization has yielded a very good reproducibility and is independent of the radiation energy. The TL signal is not influenced by the dose rate and exhibits a very low thermal fading. Moreover, the sensitivity of the samples compares favorably with that of the standard TLD100 dosimeters. Finally, at the same dose, the TL response for LDPE-g-P (AAm/AAc) films is higher than the PP-$g$-P(AAm$/$AAc), and the sulfonated grafted films are more sensitive to radiation than the grafted ones. 相似文献
7.
In this work, the response of the natural material Opal was studied in relation to its thermoluminescence (TL) and optically stimulated luminescence (OSL), after exposure to the gamma radiation of a 60Co source. The structure of the powdered Opal was verified using the X-ray diffraction, scanning electronic microscopy and energy-dispersive X-ray spectroscopy techniques. The material, in its stone form, was turned into powder and mixed to Teflon (also in powder) in three different concentrations, and then pellets were manufactured. The aim of this work was to evaluate the response of these pellets in high-doses of gamma radiation beams, and to observe their possible application as dosimeters, using the TL and OSL techniques. The dosimetric properties of the samples were analyzed by means of different tests, as: TL emission curves and OSL signal decay curves, reproducibility of TL and OSL response, minimum detectable dose, TL and OSL dose–response curves (5 Gy–10 kGy), and fading. The results obtained in this work, for the TL and OSL phenomena, demonstrated that the pellets of Opal + Teflon present an adequate performance e possibility of use as dosimeters in beams of high-dose gamma radiation. 相似文献
8.
Touchscreen glasses of mobile phones are sensitive to ionizing radiation and have the potential of usage as an emergency dosimeter for retrospective dosimetry for the purpose of triage after a radiological accident or attack. In this study the TL glow curves and dosimetric properties of touchscreen glasses were studied in detail, such as intrinsic background dose, dose response, reproducibility, optical stability and long-term stability of the TL signal.Preliminary results are additionally presented to minimize the intrinsic background dose by mechanically removing the surface layer of the glass samples. Additionally chemical element analyses of the touchscreen glass samples were carried out to investigate the difference between glass samples which show a TL signal and samples which show neither an intrinsic zero dose signal nor a radiation induced TL signal.An irradiation trial using glass samples stored in the dark demonstrated a successful dose recovery. However, when applying a realistic, external light exposure scenario, dose underestimation was observed, even though samples were pre-bleached prior to measurement. More investigations have to be carried out in the future to solve the challenge of the low optical stability of the TL signal, if touchscreen glasses are to be used as a reliable emergency dosimeter. 相似文献
9.
Electron spin resonance (ESR), thermoluminescence and photoluminescence studies in Eu2+ activated Sr5(PO4)3Cl phosphor are reported in this paper. The Sr5(PO4)3Cl:Eu2+ phosphor is twice as sensitive as the conventional CaSO4:Dy phosphor used in thermoluminescence dosimetry of ionizing radiations. It has a linear response, simple glow curve, emission peaking at 456 nm. The defect centers formed in the Sr5(PO4)3Cl:Eu2+phosphor are studied by using the technique of ESR. A dominant TL glow peak at 430 K with a smaller shoulder at 410 K is observed in the phosphor. ESR studies indicate the presence at three centers at room temperature. Step annealing measurements show a connection between one of the centers and the dominant glow peak at 430 K. The 430 K TL peak is well correlated with center I, which is tentatively identified as (PO4)2− radical. 相似文献
10.
Acoustic cavitation and sonochemical reactions play a significant role in various applications of ultrasound. A number of dosimetry methods are in practice to quantify the amount of radicals generated by acoustic cavitation. In this study, hydroxyl radical (OH) yields measured by Weissler, Fricke and terephthalic acid dosimetry methods have been compared to evaluate the validities of these methods using a 490 kHz high frequency sonochemical reactor. The OH yields obtained after 5 min sonication at 490 kHz from Weissler and Fricke dosimetries were 200 µM and 289 µM, respectively. Whereas, the OH yield was found to be very low (8 µM) when terephthalic acid dosimetry was used under similar experimental conditions. While the results agree with those reported by Iida et al. (Microchem. J., 80 (2005) 159), further mechanistic details and interfering reactions have been discussed in this study. For example, the amount of OH determined by the Weissler and Fricke methods may have some uncertainty due to the formation of HO2 in the presence of oxygen. In order to account for the major discrepancy observed with the terephthalic acid dosimetry method, high performance liquid chromatography (HPLC) analysis was performed, where two additional products other than 2-hydroxy terephthalic acid were observed. Electrospray ionization mass spectrometry (ESI-MS) analysis showed the formation of 2,5-dihydroxyterephthalic acid as one of the by-products along with other unidentified by-products. Despite the formation of additional products consuming OH, the reason for a very low OH yield obtained by this dosimetry could not be justified, questioning the applicability of this method, which has been used to quantify OH yields generated not only by acoustic cavitation, but also by other processes such as γ-radiolysis. The authors are hoping that this Opinion Paper may initiate further discussion among researchers working in sonochemistry area that could help resolve the uncertainties around using these dosimetry methods. 相似文献
11.
Results of the investigation concerning thermoluminescence (TL) responses to X, gamma and neutron radiation fields for crystals of complex fluoride K2GdF5 undoped and doped with varying concentrations of Dy3+ ions are presented. Crystals doped with 5.0 at% Dy3+ have shown the most efficient TL response, with a linear response to doses for all the radiation fields. In the X rays range, the maximum TL response has been found to be 15 times more than the response for gamma. The fast and thermal neutron TL outputs were evaluated for K2Gd0.95Y0.05F5 and the contribution of the gamma component in the TL curve was estimated. 相似文献
12.
ZnS:Cu nanophosphors were prepared by wet chemical methods and characterized by X-ray diffraction (XRD). The typical morphologies of the nanophosphors were investigated by scanning electron microscopy (SEM). The thermoluminescence (TL) properties of inorganically and organically passivated ZnS:Cu nanophosphors were investigated after γ-irradiation using a 60Co source at room temperature. The TL glow curve of capped ZnS:Cu showed variation in TL peak and intensity as the capping agent was changed. Amongst the synthesized samples the TL glow curve of SiO2 capped ZnS:Cu showed the highest TL intensity. It has been found that TL response of SiO2 capped ZnS:Cu is linear in the range 10-550 Gy. A discussion of the obtained results is also presented. 相似文献
13.
Thermoluminescence properties of lanthanum aluminum oxide (LaAlO3) crystals doped with optically active rare earth ions have been investigated for ultraviolet dosimetry purposes. Single crystals co-doped with 5.0 at.% of Ce3+ and 1.0 at.% of Dy3+ ions have two thermoluminescent (TL) peaks at 151 °C and 213 °C which can be sensitized after 1 h of UV exposure. The material shows very high TL output and linear response for UV spectral irradiance ranging from 0.04 to 1.20 mJ cm−2, that corresponds to 10 times the TL response of the Al2O3:C oxides. From 0.62 to 148.0 mJ cm−2 the dependence is linear with the logarithm of the spectral irradiance. The investigation demonstrates that LaAlO3:Ce,Dy crystals are very attractive to be investigated as UV dosimeters. 相似文献
14.
At the personal dosimetry service of the ENEA Radiation Protection Institute, a fast neutron dosemeter based on chemically etched CR-39 (Poly Allyl Diglycol Carbonate) is operating since more than 20 years. Since then the track counting has been performed with a system consisting of a microscope, a video camera and an image analyser. A new automatic analysis system has been developed, based on automatic motion and vision tools and the programming language Labview 6, from National Instruments. The system selects the correct number of reading fields on the basis of a preliminary scan of the dosemeter, therefore operating motion and vision procedures in order to perform the analysis. For each reading field the system collects the track area distribution to which a previously optimised algorithm is applied, in order to correct the energy dependence of the response. For each dosemeter, a record containing the barcode and all data necessary for assessing the personal dose equivalent is stored in a routine file. Taking advantage of automatic vision and motion, a CR-39 reader with innovative features in terms of reproducibility, velocity and accuracy is now available even for the routine purposes of dosimetric services. 相似文献
15.
The thermoluminescence of x-irradiated CaSO4: Dy phosphors has been studied for diverse activator concentrations. The concentration-dependence of these phosphors on the
increase of glow peak intensities has been found to be remarkable. For higher concentration of dysprosium the concentration
quenching effect has been observed. This has been attributed to the resonant transfer of energy from one activator atom to
another, bringing the possible migration of energy in a solid, which is likely to get dissipated without luminescence, at
the quenching site itself. The effect of irradiation time on the glow peak intensities reveals the initial linearity and a
subsequent decrease indicating the possible radiation damage. The role of Na2SO4 as a charge compensator has been studied in detail. An attempt has been made to unravel the type of kinetics involved in
the process, by calculating the activation energies by different methods. It has been concluded that the type of kinetics
involved in the process is bimolecular. 相似文献
16.
J. Azorín Nieto N. M. Khaidukov C. Baillet Guerrero J. C. Azorin Vega T. Rivera Montalvo A. Gallegos Cuellar 《辐射效应与固体损伤》2013,168(8):443-449
This article presents results of thermoluminescence (TL) and photoluminescence (PL) measurements performed on beta-irradiated K 2YF 5:Tb 3++PTFE pellets. K 2YF 5 crystals doped with 0.1% of trivalent optically active Tb 3+ ions in pellets form were investigated. The TL glow curve of K 2YF 5:Tb 3++PTFE has a simple structure with two well-defined peaks centered at 170 and 307 °C. The TL sensitivity of the K 2YF 5:Tb 3++PTFE irradiated with beta radiation was found to be higher than that of commercial phosphor TLD-100 (LiF:Mg,Ti), at the same conditions of irradiation and readout. Moreover, PL measurements performed on the terbium doped material show the presence of Terbium as Tb 3+ in the material. 相似文献
17.
J.M. Schwantes S.D. Miller R.K. Piper M.K. Murphy J.E. Amonette S. Bonde D.C. Duckworth 《Radiation measurements》2009,44(4):405-408
Thermoluminescence (TL) and Electron Paramagnetic Resonance (EPR) dosimetry were used to measure dose effects in borosilicate glass with time, from 10 min to 60 days following exposure to a dose of up to 100 Gy. TL and EPR results were consistent and performed similarly, with both techniques capable of achieving an estimated limit of detection of between 0.5 and 1 Gy. Three peaks were identified in the TL glow curve at roughly 110 °C, 205 °C, and 225 °C. The intensity of the 205 °C peak was the dominant peak over the time period of this study. The stability of all of the peaks with time since irradiation increased with their corresponding temperature and no significant variation was observed in the glow curve response to a specified total dose attained at different dose rates. The intensity of the 205 °C peak decreased logarithmically with time regardless of total dose. Based upon a conservative limit of detection of 3.3 Gy, a 100 Gy dose would still be detected 2.7E3 years after exposure. Here, we introduce the concept of intrinsic dosimetry, the measurement of the total absorbed dose received by the walls of a container containing radioactive material. The foreseen advantage of intrinsic dosimetry comes from considering the measured absorbed dose received by containers in concert with the characteristics (amount, type) of the source of that dose, the radioactive material contained within the walls of the container, in order to provide enhanced information about the history of an unknown sample in question. Three hypothetical scenarios are presented to introduce this method and to illustrate how intrinsic dosimetry might benefit the fields of nuclear forensics and waste management. 相似文献
18.
According to standard delocalized kinetic models of thermoluminescence (TL), when an irradiated sample is held at a high temperature T, the isothermal TL signal will decay with a characteristic thermal decay constant λ which depends strongly on the temperature T. This prediction of standard delocalized kinetic theory is investigated in this paper by studying two TL dosimeters, MgB4O7:Dy, Na and LiB4O7:Cu, In (hereafter MBO and LBO correspondingly). In the case of LBO it was found that the thermal decay constant λ of the main dosimetric TL peak follows exactly the predictions of standard delocalized kinetic theory. Furthermore, the thermal activation energy of the main peak evaluated by the isothermal decay method is in full agreement with values obtained from initial rise and glow curve fitting methods. However, in the case of MBO it was found that the thermal decay constant λ varies little with the isothermal decay temperature T. In order to explain these unusual results for MBO, the TL glow curves and isothermal decay curves were analyzed using analytical expressions derived recently from a radiative tunneling recombination model. Based on the different behavior of the two TL dosimeters, it is suggested that the isothermal decay of TL at high temperatures can be used to discriminate between radiative delocalized recombination and radiative localized recombination processes. 相似文献
19.
Commissioning and quality assurance of radiotherapy linear accelerators require measurement of the absorbed dose to water, and a wide range of detectors are available for absolute and relative dosimetry in megavoltage beams.In this paper, the PTW microLion isooctane-filled ionization chamber has been tested to perform relative measurements in a 6 MV photon beam from a linear accelerator. Output factors, percent depth dose and dose profiles have been obtained for small and large fields. These quantities have been compared with those from usual detectors in the routine practice. In order to carry out a more realistic comparison, an uncertainty analysis has been developed, taking type A and B uncertainties into account.The results present microLion as a good option when high spatial resolution is needed, thanks to its reduced sensitive volume. The liquid filling also provides a high signal compared to other detectors, like that based on air filling. Furthermore, the relative response of microLion when field size is varied suggests that this detector has energy dependence, since it is appreciated an over-response for small fields and an under-response for the large ones. This effect is more obvious for field sizes wider than 20 × 20 cm2, where the differences in percent depth dose at great depths exceed the uncertainties estimated in this study. 相似文献
20.
The effect of deep traps filled by a pulse electron beam on the thermoluminescent (TL) properties in Al2O3:C dosimetric crystals is studied. When the deep traps are filled, the dosimetric peak at 170 °C acquires a double-peak structure not present in the initial samples. The effect of the population of the deep centers having various nature (electron or hole traps) and energy depth on the shape of the dosimetric TL peak structure is analyzed. An assumption is made that in the temperature ranges of 350–500 °C and 650–750 °C, electron traps are emptied, whereas at T = 500–650 °C hole traps are emptied. The possibility of using the TL associated with deep traps in high-dose dosimetry of pulse electron beams is shown. 相似文献