首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rare earth orthovanadates, REVO4, having the zircon structure, form a series of materials interesting for magnetic, optical, sensor, and electronic applications. Enthalpies of formation of REVO4 compounds (RE=Sc, Y, Ce-Nd, Sm-Tm, Lu) were determined by oxide melt solution calorimetry in lead borate (2PbO·2B2O3) solvent at 1075 K. The enthalpies of formation from oxide components become more negative with increasing RE ionic radius. This trend is similar to that obtained for the rare earth phosphates.  相似文献   

2.
Physical properties of a series of homologous RE-B-C(N) B12 cluster compounds REB17CN, REB22C2N, and were investigated. The structures of the compounds are layer-like along the c-axis, with rare earth and B6 octahedral layers separated by B12 icosahedral and C-B-C chain layers whose number increases successively from two B12 layers for the REB17CN compound to four for the REB28.5C4 compound. The rare earth atoms are configured in two triangular flat layers which are stacked on top of one another in AB stacking where the nearest-neighbor rare earth directions are the three atoms forming a triangle in the adjacent layer. The series of homologous compounds exhibit a spin glass transition with Tf shifting in correspondence with variations of the basal plane lattice constants, consistent with the magnetic interaction being effective in the basal planes. The isothermal remanent magnetization shows a stretched exponential decay . Exponents determined for the different homologous compounds were scaled as a function of Tr=T/Tf and found to follow the empirical dependency determined for typical spin glasses. It is indicated that a mixture of disorder originating from the partial occupancy of the rare earth sites and frustration of interactions due to the unique configuration is responsible for the manifestation of spin glass transitions in these homologous systems.  相似文献   

3.
A series of isotypic rare‐earth metal pentagermanides including the new compound TbGe5 were prepared by high‐pressure synthesis. They crystallize in the orthorhombic space group Immm [No. 71; a = 395.70(9) pm; b = 611.1(2) pm, and c = 983.6(3) pm for TbGe5]. The crystal structure is isotypic to LaGe5 and consists of puckered germanium slabs, which sandwich a second germanium species and the rare‐earth metal atoms. At ambient pressure, the thermal decomposition of the phases REGe5 (RE = La, Nd, Sm, Gd, and Tb) proceeds via discrete intermediate steps into Ge(cF8) and thermodynamically stable germanium‐poorer phases. The investigated compounds REGe5 are paramagnetic metallic conductors, which order antiferromagnetically at low temperatures. Specific heat measurements reveal that the superconducting state of LaGe5 below Tc = 7.1(1) K is characterized by a critical field of μ0Hc2 = 0.2 T and weak electron‐phonon coupling. Density‐functional based band‐structure calculations yield a very similar electronic structure for all the isotypic REGe5 compounds. Besides a slight increase in the width of the valence band for smaller RE atoms, only minor differences are found for the two different germanium environments.  相似文献   

4.
Twenty-eight new Heusler phases REPd2Mg, REPd2Cd, REAg2Mg, REAu2Mg and REAu2Cd with different rare earth elements were synthesized from the elements in sealed niobium ampoules in a water-cooled sample chamber of an induction furnace. The samples were characterized by powder X-ray diffraction. The cell volumes show the expected lanthanide contraction. The structures of YPd2Cd, GdPd2Cd, GdAu2Cd, Y1.12Ag2Mg0.88 and GdAg2Mg were refined based on single crystal diffractometer data. The magnetic properties were determined for fifteen phase pure samples. LuAu2Mg is a weak Pauli paramagnet with a susceptibility of 1.0(2) × 10−5 emu mol−1 at room temperature. The remaining samples show stable trivalent rare earth ions and most of them order magnetically at low temperatures. The ferromagnet GdAg2Mg shows the highest ordering temperature of TC = 98.3 K. 113Cd and 89Y MAS NMR spectra of YAu2Cd and YPd2Cd confirm the presence of unique crystallographic sites. The resonances are characterized by large Knight shifts, whose magnitude can be correlated with electronegativity trends.  相似文献   

5.
The crystal structures of the tetragonal rare earth (RE) oxychlorides, REOCl (RE=La-Nd, Sm-Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P4/nmm, No. 129, Z=2) is stable for all but Er-Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of (REO)nn+ complex cations and Xn anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation and microabsorption effects were found significant. The evolution of interatomic distances and bond angles indicated that the reason for the preferred structure changing from tetragonal to hexagonal is the strain in the chlorine layer. The bond valence parameter B for the RE-O bonds had to be recalculated due to the covalent nature of the (REO)nn+ unit. The results obtained with the new parameter confirmed the strains in the chlorine layer to be the cause for the phase transition.  相似文献   

6.
The room temperature phonon modes of the isostructural (Nd,Yb):YxGd1−x(VO4) laser crystals were determined using the Raman scattering technique, and the observed wavenumbers follow the overall mode distribution expected for REVO4 (RE=rare earth) compounds with the tetragonal zircon structure, . They were assigned according to the group theory in terms of the internal modes of the VO4 tetrahedron and the external modes of the YxGd1−x(VO4) lattice. No appreciable changes in the phonon wavenumbers were observed for Yb:GdVO4 (Yb=0.008, 0.015, 0.020, 0.025, and 0.035), indicating that the force fields in the GdVO4 lattice are not strongly altered by Yb doping at the Gd site. However, most of the phonon wavenumbers in the systems (Nd,Yb):YxGd1−x(VO4) shifts upwards (one-phonon-like behavior) when Y replaces for Gd.  相似文献   

7.
《Tetrahedron: Asymmetry》2006,17(4):504-507
Novel chiral rare earth metal complexes bearing perfluorinated binaphthyl phosphate ligand RE[(R)-F8BNP]3 (RE = rare earth; F8BNP = 5,5′,6,6′,7,7′,8,8′-octafluoro-1,1′-binaphthyl-2,2′-diyl phosphate) have been synthesized and used as a catalyst for the asymmetric electrophilic fluorination reaction of β-keto esters. The use of Sc[(R)-F8BNP]3 catalyst in combination with 1-fluoropyridinium triflate (NFPY–OTf) as a fluorinating agent was found to give the desired α-fluoro-β-keto esters in high chemical yields and enantiomeric excesses (up to 88% ee) under mild conditions.  相似文献   

8.
We have established the formation of anhydrous double sulfates of KRE(SO4)2 for the entire series of rare earth elements, which crystallize in five different structural types. The parameters of the unit cells of the double sulfates KRE(SO4)2 (RE = LaTb) have been determined. The thermal stability and character of decomposition of the double sulfates of potassium and rare earth elements have been investigated.  相似文献   

9.
Four new isostructural rare earth manganese stannides, namely RE3MnSn5−x (x=0.16(6), 0.29(1) for RE=Tm, x=0.05(8), 0.21(3) for RE=Lu), have been obtained by reacting the mixture of corresponding pure elements at high temperature. Single-crystal X-ray diffraction studies revealed that they crystallized in the orthorhombic space group Pnma (No. 62) with cell parameters of a=18.384(9)-18.495(6) Å, b=6.003(3)-6.062(2) Å, c=14.898(8)-14.976(4) Å, V=1644.3(14)-1679.0(9) Å3 and Z=8. Their structures belong to the Hf3Cr2Si4 type and feature a 3D framework composed of 1D [Mn2Sn7] chains interconnected by [Sn3] double chains via Sn-Sn bonds, forming 1D large channels based on [Mn4Sn16] 20-membered rings along the b-axis, which are occupied by the rare earth atoms. Electronic structure calculations based on density functional theory (DFT) for idealized “RE3MnSn5” model indicate that these compounds are metallic, which are in accordance with the results from temperature-dependent resistivity measurements.  相似文献   

10.
The rare earth borides RERu4B4 (RE = Ce, Pr, Nd, Sm) were synthesized from the elements by arc‐melting and their crystal structures were studied on the basis of X‐ray powder and single‐crystal diffraction: LuRu4B4 type, I41/acd, a = 747.47(8), c = 1506.4(3) pm, wR2 = 0.0579, 362 F2 values for CeRu4B4, a = 751.3(2), c = 1507.1(5) pm, wR2 = 0.0724, 471 F2 values for PrRu4B4, a = 751.0(2), c = 1506.9(6) pm, wR2 = 0.0598, 384 F2 values for NdRu4B4, and a = 749.1(1), c = 1506.0(3) pm, wR2 = 0.0759, 413 F2 values for SmRu4B4, with 18 variables per refinement. Striking structural motifs of the RERu4B4 structures are Ru4 tetrahedra and B2 dumbbells with Ru–Ru and B–B distances of 271 and 180 pm in CeRu4B4. The intermediate valence of cerium leads to shorter Ce–Ru distances of 292 pm. CeRu4B4 behaves like a Pauli paramagnet with a small room temperature susceptibility of 1.5 × 10–4 emu · mol–1. Chemical bonding analyses shows substantial Ru–B and B–B bonding within the [Ru4B4] substructure.  相似文献   

11.
We have measured heat capacity and thermal expansion of rare earth dodecaborides REB12 (RE=Y, Tb-Tm, Lu). YB12 and LuB12 are diamagnetics whereas the other dodecaborides are ordered antiferromagnetically. The amplitude of the heat capacity discontinuity at the Néel temperature and the shape of the heat capacity variation in the critical region for all these antiferromagnetics are characteristics for amplitude-modulated magnetic structures. In the ordered state TbB12 reveals two first-order phase transitions, most likely due to magnetic structure changes. The heat capacity of ErB12 just below the Néel point shows an anomaly of unclear origin. From the Schottky contribution to the heat capacity we have determined crystal field parameters. They are completely different than that is estimated from Point Charge Model.  相似文献   

12.
The rare earth metal rich compounds RE4NiMg (RE=Y, Pr-Nd, Sm, Gd-Tm, Lu) were synthesized from the elements in sealed tantalum tubes in an induction furnace. All compounds were investigated by X-ray diffraction on powders and single crystals: Gd4RhIn type, space group F4¯3m, Z=16, a=1367.6(2) pm for Y4NiMg, a=1403.7(3) pm for Pr4NiMg, a=1400.7(1) pm for Nd4NiMg, a=1386.5(2) pm for Sm4NiMg, a=1376.1(2) pm for Gd4NiMg, a=1362.1(1) pm for Tb4NiMg, a=1355.1(2) pm for Dy4NiMg, a=1355.2(1) pm for Ho4NiMg, a=1354.3(2) pm for Er4NiMg, a=1342.9(3) pm for Tm4NiMg, and a=1336.7(3) pm for Lu4NiMg. The nickel atoms have trigonal prismatic rare earth coordination. These NiRE6 prisms are condensed via common edges to a three-dimensional network which leaves voids for Mg4 tetrahedra and the RE1 atoms which show only weak coordination to the nickel atoms. The single crystal data indicate two kinds of solid solutions. The RE1 positions reveal small RE1/Mg mixing and some compounds also show Ni/Mg mixing within the Mg4 tetrahedra. Y4NiMg and Gd4NiMg have been tested for hydrogenation. These compounds absorb up to eleven hydrogen atoms per formula unit under a hydrogen pressure of 1 MPa at room temperature. The structure of the metal atoms is maintained with only an increase of the lattice parameters (ΔV/V≈22%) if the absorption is done at T<363 K as at higher temperature a decomposition into REH2-REH3 hydrides occurred. Moreover, the hydrogenation affects drastically the magnetic properties of these intermetallics. For instance, Gd4NiMg exhibits an antiferromagnetic behavior below TN=92 K whereas its hydride Gd4NiMgH11 is paramagnetic down to 1.8 K.  相似文献   

13.
Lanthanum orthotantalate, LaTaO4, is an excellent host lattice for rare-earth luminescent ions such as Eu3+ for red emission. However, there are multiple RETaO4 (RE=rare earth) polymorphs, and the stability of these is controlled predominantly by the RE-radius. Thus it is difficult to obtain a pure phase of LaTaO4:Eu as Eu concentration and consequently the RE radius is varied. We recently reported a ‘soft-chemical’ route that allows crystallization of pure-phase LaTaO4:Eu at temperatures as low as 800 °C. In the current report, we investigate polymorph evolution and Eu emission as a function of Eu concentration and annealing temperature. We obtain a maximum quantum yield (QY) of 83% at the highest Eu substitution (25%) for which the low temperature orthorhombic (Pbca) polymorph is stable. Therefore, QY is not limited necessarily by concentration quenching; rather it is limited by polymorph stability as the RE-radius decreases with increasing Eu substitution.  相似文献   

14.
The ternary intermetallic compounds RE2Cu2Cd (RE=Y, Sm, Gd-Tm, Lu) were synthesized by induction-melting of the elements in sealed tantalum tubes. The samples were characterized by X-ray powder diffraction. The structure of Gd2Cu2Cd was refined from single crystal X-ray diffractometer data: Mo2FeB2 type, space group P4/mbm, a=756.2(3), c=380.2(3) pm, wR2=0.0455, 321 F2 values, 12 variables. The structures are 1:1 intergrowth variants of slightly distorted CsCl and AlB2 related slabs of compositions RECd and RECu2. The copper and cadmium atoms build up two-dimensional [Cu2Cd] networks (257 pm Cu-Cu and 301 pm Cu-Cd in Gd2Cu2Cd) which are bonded to the rare earth atoms via short RE-Cu contacts (290 pm in Gd2Cu2Cd). Temperature dependent susceptibility measurements of RE2Cu2Cd with RE=Gd, Tb, Dy, and Tm show experimental magnetic moments which are close to the free RE3+ ion values. The four compounds show ferromagnetic ordering at TC=116.7(2), 86.2(3), 48.4(1), and 14.5(1) K, respectively, as confirmed by heat capacity measurements. Dy2Cu2Cd shows a spin reorientation at TN=16.9(1) K.  相似文献   

15.
Q.D. Zeng  R.K. Li 《Solid State Sciences》2010,12(12):2144-2147
A series of potassium rare earth oxyborates, K2RE2(BO3)2O (RE = La, Nd, Sm and Eu), have been synthesized. Single crystal of the first member of the series, K2La2(BO3)2O, has been grown by the flux method. Its structure, determined by single crystal X-ray diffraction, shows that it belongs to the monoclinic system, space group P21/c with unit cell parameters of a = 11.422(2) Å, b = 6.6803(13) Å, c = 10.813(2) Å, β = 17.23(3)° and Z = 4. Optical transmission spectrum shows that the K2La2(BO3)2O crystal is highly transparent from 215 nm to 2750 nm.  相似文献   

16.
Anatase TiO2 nanobelts doped with rare earth (RE) ions Yb3+, Er3+ or Yb3+/Er3+ have been prepared using layered titanate nanobelts (LTO NBs) with RE ions as the precursor obtained by ion-exchange between LTO NBs and RE ions under hydrothermal process. Various measurement results demonstrate that the RE ions have doped into the lattice of TiO2, and the Er3+ or Yb3+/Er3+ doped nanobelts show strong visible up-conversion (UC) fluorescence under 980 nm excitation. The UC emission intensity of LTO NBs embedded with Er3+ or Yb3+/Er3+ is slightly higher than that of the corresponding TiO2 nanobelts doped with RE ions, whereas higher RE doping content leads to the decrease of UC emission intensity due to the concentration-quenching effect.  相似文献   

17.
Spherical SiO2 particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO2@RE2O3 (RE=rare earth elements) and SiO2@Gd2O3:Ln3+ (Ln=Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO2@RE2O3 (RE=rare earth elements) and SiO2@Gd2O3:Ln3+ (Eu3+, Tb3+, Dy3+, Sm3+, Er3+, Ho3+) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles). Under the excitation of ultraviolet, the Ln3+ ion mainly shows its characteristic emissions in the core-shell particles from Gd2O3:Ln3+ (Eu3+, Tb3+, Sm3+, Dy3+, Er3+, Ho3+) shells.  相似文献   

18.
Three rare earth borosilicate oxyapatites, RE5Si2BO13 (RE=La, Gd, Y), were synthesized via wet chemical method, of which RE5Si2BO13 (RE=Gd, Y) were first reported in this work. In the three oxyapatites, [BO4] and [SiO4] share the [TO4] tetrahedral oxyanion site, and RE3+ ions occupy all metal sites. The differential scanning calorimetry-thermo gravimetry measurements and high temperature powder X-ray diffraction pattern revealed a vitrification process within 300-1200 °C, which was due to the glass-forming nature of borosilicates. From the VUV excitation spectra of Eu3+ and Tb3+ in RE5Si2BO13, the optical band gaps were found to be 6.31, 6.54 and 6.72 eV for RE5Si2BO13 (RE=La, Gd, Y), respectively. The emission and excitation bands of Eu3+ and Tb3+ are discussed relating with their coordination environments. Among the three hosts, Y5Si2BO13 would be the best for Eu3+ and Tb3+-doped phosphors.  相似文献   

19.
A series of ternary compounds RECu9Mg2 (RE=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb) have been synthesized via induction melting of elemental metal ingots followed by annealing at 400 °C for 4 weeks. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDXS) was used for examining microstructure and phase composition. These phases crystallize with an ordered version of the binary hexagonal structure type first reported for CeNi3. The crystal structure was solved for TbCu9Mg2 from single crystal X-ray counter data (TbCu9Mg2-structure type, P63/mmc-space group, hP24-Pearson symbol, a=0.49886 (7) nm, c=1.61646 (3) nm, RF=0.0474 for 190 unique reflections). The Rietveld refinement of the X-ray powder diffraction patterns of RECu9Mg2 confirmed the same crystal structure for the reported rare earth metals. The unit cell volumes for RECu9Mg2 smoothly follow the lanthanide contraction. The existence of a RECu9Mg2 phase was excluded for RE=Er and Tm under the investigated experimental conditions.  相似文献   

20.
New rare-earth boron-rich compounds with the formula of RE1−xB12Si3.3−δ (RE=Y, Gd-Lu) (0?x?0.5,δ≈0.3) have been synthesized. They belong to a new type of rhombohedral structure with the space group of R-3m (No. 166) and z=9. The lattice constants were measured from powder XRD data. Crystal structure solved from powder XRD data for Tb0.68B12Si3 as a representative has been compared with that of YB17.6Si4.6 (or Y0.68B12Si3.01), whose structure was solved from single-crystal reflection data. The structure model is confirmed by high-resolution transmission microscope analysis. The vibrational modes of the new crystals were measured by Raman spectroscopy. Temperature dependence of magnetic susceptibility which was measured for RE1−xB12Si3.3−δ single crystals by SQUID revealed that they are paramagnetic materials down to 2.0 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号