首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一种高双折射光子晶体光纤的模式特性分析   总被引:3,自引:1,他引:2  
张晓娟  赵建林  崔莉 《光学学报》2008,28(7):1379-1383
应用全矢量频域有限差分法,分析了所提出的一种高双折射光子晶体光纤的模式截止、损耗、模场半径及数值孔径等特性.数值模拟结果表明,通过设置合适的结构参量,可使这种高双折射光子晶体光纤在保持模式双折射为10-3量级的前提下,能够在600~1800 nm波长范围内保持单模传输,并且限制损耗可低于10-4dB/m量级,同时还可以获得较大的数值孔径,因而聚光能力增强,此外,通过采用高斯曲线拟合基模的模场分布,得到的模场半径与实际模场半径吻合得很好.  相似文献   

2.
In this paper, a novel double-clad photonic crystal fiber (DC-PCF) is proposed for achieving both high birefringence and low leakage loss. According to numerical simulation of the proposed PCF, the extraordinarily high birefringence (over 2×10−2) and low leakage loss of the order of 0.0001 dB/km over a large wavelength range are achieved simultaneously. Single-polarization single-mode (SPSM) operation with low leakage loss is also discussed and can be realized and optimized in the PCF by adopting suitable structure parameters.  相似文献   

3.
汪静丽  姚建铨  陈鹤鸣  邴丕彬  李忠洋  钟凯 《物理学报》2011,60(10):104219-104219
提出了一种新型高双折射的混合格子太赫兹光子晶体光纤,通过对芯区亚波长尺寸的空气孔进行多种格子组合排列,增加结构的非对称性实现高的模式双折射. 全文仿真建模采用专业的有限元计算软件COMSOL Multiphysics 4.0,结果表明:混合格子太赫兹光子晶体光纤在很宽的频率范围内都具有较高的双折射(达到10-2)和低的限制损耗,且通过改变光纤的某些参数可以灵活地控制其双折射或限制损耗特性. 相比于同类光通信波段光纤,由于太赫兹波波长较大,能够降低芯区微结构加工的难度,具有可行性. 关键词: 双折射 混合格子 太赫兹光子晶体光纤 限制损耗  相似文献   

4.
A modal solution approach based on the powerful, finite element method (FEM) using a full-vectorial H-field formulation has been used to determine the single-mode operation of a photonic crystal fiber (PCF). The modal solution of the fundamental space-filling mode has also been obtained to identify the cutoff conditions of the waveguide modes. The FEM, with the perfectly matched layer boundary condition, has been developed and employed to characterize the leakage loss and the differential loss between the polarized modes of a PCF. The design approach for a single-polarization and single-mode PCF has also been discussed.  相似文献   

5.
In this article, a new simplified structure of a highly birefringent chalcogenide As2Se3 glass photonic crystal fiber (PCF) is designed and analyzed by using fully vectorial finite element method. The effective indices, confinement loss, birefringence, and chromatic dispersion of fundamental polarized mode are calculated in the proposed PCF for a wide wavelength range. To maintain the polarization in chalcogenide As2Se3 glass PCF, we enlarged two of the central air holes and reduced two transverse air holes for achieving high birefringence. This helps in creating an effective index difference between the two orthogonal polarization modes. It is also shown that As2Se3 glass PCF provides lower chromatic dispersion and less confinement loss compared to silica PCF of the same structure in wavelength range 1.3 to 1.8 μm and hence such chalcogenide As2Se3 glass PCF have high potential to be used in dispersion compensating and birefringence application in optical communication systems. In addition to this, the polarization mode dispersion (PMD) result of the proposed PCF is also reported.  相似文献   

6.
付博  李曙光  姚艳艳  张磊  张美艳 《中国物理 B》2011,20(2):24209-024209
A kind of improved high birefringence photonic crystal fibre (PCF) is proposed in this paper. The characteristics of birefringence, dispersion and leakage loss are studied by the multipole method. Numerical results show that the improved PCF possesses the properties of a flat dispersion and single mode operation. Moreover, with the operating wavelength λ = 1.55μm, the modal birefringence increases greatly in comparison with that of the original PCF, and the leakage loss is about 104 times smaller than that of the original PCF because the modification gives rise to the strong confinement of guided modes. It is expected that the improved PCF can be used as high birefringence and dispersion flattened fibres.  相似文献   

7.
高双折射光子晶体光纤研究   总被引:6,自引:2,他引:4  
张明明  马秀荣  曹晔  岳洋  王力维 《光子学报》2008,37(6):1126-1129
设计了一种高双折射光子晶体光纤(Photonic Crystal Fiber,PCF),即增大两个与纤芯相邻的空气孔直径,使光纤只具有二重对称性,呈现出较高的双折射.通过压缩x轴方向孔间距,进一步增大双折射度.采用全矢量有限单元法(Finite-element Method,FEM),研究了该光子晶体光纤基模对应的相双折射和群双折射,给出了该高双折射PCF双折射随输入光波长的变化曲线.结果获得了10-3量级的高双折射.具有设计参量的该光子晶体光纤结构的相双折射在1 550 nm处可以达到5.0×10-3,在更长的波长处,这一值会更高.  相似文献   

8.
A novel photonic crystal fiber (PCF) based on a four-hole unit is proposed in order to meet the requirements of high birefringence, negative dispersion and confinement loss in fiber-optic communication. The proposed design has been simulated based on the full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Analysis results show that the proposed PCF can achieve a high birefringence to the order of 10−2 at the wavelength of 1.55 μm, a large negative dispersion over a wide wavelength range and confinement losses lower than 10−9 dB/m simultaneously, which has important applications in polarization-maintaining (PM) fibers, single-polarization single-mode (SPSM) fibers, dispersion compensation fibers and so on.  相似文献   

9.
In this paper, we present and explore a new hybrid cladding design for improved birefringence and highly nonlinear photonic crystal fibers (PCFs) in a broad range of wavelength bands. The birefringence of the fundamental mode in such a PCF is numerically analyzed using the finite element method (FEM). It is demonstrated that it is possible to design a simple highly nonlinear hybrid PCF (HyPCF) with a nonlinear coefficient of the about 46 W−1 km−1 at a 1.55 μm wavelength. According to simulation, the highest modal birefringence and lowest confinement loss of our proposed structure at the excitation wavelength of λ = 1.55 μm can be achieved at a magnitude of 1.77 × 10−2 and of the order less than 102 dB/km with only five rings of air-holes in the fiber cladding.  相似文献   

10.
Elliptical-hole photonic crystal fibers   总被引:9,自引:0,他引:9  
Steel MJ  Osgood RM 《Optics letters》2001,26(4):229-231
We study the dispersive properties of photonic crystal fibers (PCF's) with elliptical air holes. The unusual guidance of PCF leads to novel behavior of the birefringence, group-velocity walk-off, and dispersion parameters, including the possibility of zero walk-off with high birefringence in the single-mode regime. A number of these effects are closely tied to the underlying radiation states of the air-hole lattice.  相似文献   

11.
Polarization-maintaining photonic crystal fibre   总被引:1,自引:0,他引:1       下载免费PDF全文
娄淑琴  王智  任国斌  简水生 《中国物理》2004,13(7):1052-1058
Photonic crystal fibres (PCFs) offer new possibilities of realizing highly birefringent fibres due to a higher intrinsic index contrast compared to conventional fibres. In this paper, we analyse theoretically the modal properties of a kind of polarization-maintaining PCF, namely the elliptical hole photonic crystal fibre (EHPCF) with a central small elliptical hole introduced in the core region. We demonstrate the possibility of achieving large birefringence with zero walk-off in the single-mode regime. This PCF also exhibits unusual dispersion properties. Several hundred nanometres of ultra broadband flattened dispersion near the wavelength 1.55μm is achieved in this EHPCF with a central small hole of d_c=0.4Λ.  相似文献   

12.
Choi HY  Park KS  Lee BH 《Optics letters》2008,33(8):812-814
We present an all-fiber interferometer fabricated with a single piece of an endless single-mode photonic crystal fiber (PCF) by an electric arc discharge. By forming a long period grating (LPG) at a point and collapsing the air holes at another point along the PCF, the simple but effective interferometer could be implemented. The LPG made a strong wavelength selective mode coupling between the core and cladding modes in the interesting wavelength range, while the air-hole collapse induced wavelength independent mode couplings. By cascading them, we could implement the all-fiber interferometer. As a potential application of the proposed all PCF interferometer, strain sensing is experimentally demonstrated.  相似文献   

13.
A high birefringence Ge20Sb15Se65 based photonic crystal fiber (PCF) is proposed. It consists of a central defect core surrounded by two kinds of elliptical air holes with different size. The Finite Difference Time Domain method (FDTD) is used to simulate the guided modes of the designed PCF. The properties of this PCF are investigated including the birefringence, nonlinearity, and polarization mode dispersion in the mid-infrared range. The results show that for the optimized structure parameters, the highest birefringence of 0.1176 is obtained. The maximum nonlinearity coefficients of 38390 w?1km?1 and 49760 w?1km?1 for x- and y-polarization modes are achieved.  相似文献   

14.
A novel high birefringence polymer photonic crystal fiber (PCF) is proposed in this work. This PCF is composed of a polymer core and a cladding with elliptical air holes and squeezed triangular lattice. The high birefringence is introduced on the combined effect of elliptical air holes and the squeezed lattice. Our numerical results based on the supercell lattice method indicate that the birefringence can reach as high as 0.0018 at 650 nm wavelength with a properly designed cladding structure. We also analyze the dependence of the birefringence on structure parameters. And we design a PCF that has high and flattened birefringence.  相似文献   

15.
In this paper, we proposed a dual-enhanced core photonic crystal fiber (PCF) with high birefringence and ultra-high negative dispersion for dispersion compensation in a polarization maintained optical system. Using finite difference time domain (FDTD) method, we presented dispersion compensating PCF (DC-PCF) with negative dispersion between −1650 ps nm−1 km−1 and −2305 ps nm−1 km−1 in C-band and particularly −2108 ps nm−1 km−1 in λ = 1.55 μm wavelength. By this method, we can compensate dispersion in 124 km long span of a conventional single mode fiber (SMF) by 1 km-long of the DC-PCF at λ = 1.55 μm wavelength. Moreover, fundamental mode of the proposed PCF can induce birefringence about 3.5 × 10−3 at 1.55 μm wavelength.  相似文献   

16.
双折射光子晶体光纤传输特性分析   总被引:6,自引:2,他引:6  
池灏 《光学学报》2004,24(11):552-1556
采用时域有限差分法对光子晶体光纤导模的传输特性进行数值分析,通过该法可得到任意横向结构光子晶体光纤的色散特性和双折射特性。为提高精度,在计算中应用了各向异性完全匹配层作为吸收边界条件。光子晶体光纤的传输特性完全由其横向结构决定。用时域有限差分法对一类对称结构和两类非对称结构光子晶体光纤进行了数值分析,计算结果表明经合理设计的非对称结构光子晶体光纤中可存在较高的双折射(其双折射可达0.07)。表明时域有限差分法可有效应用于分析和设计具有特定色散和偏振特性的光子晶体光纤。  相似文献   

17.
郭艳艳  侯蓝田 《物理学报》2010,59(6):4036-4041
提出一种新型的全固态八边形大模场低损耗的掺镱石英光子晶体光纤,利用多极法对光纤的结构和特性进行了模拟.这种结构的光子晶体光纤空气孔由掺有少量氧化硼的石英棒代替,简化了制备过程,提高了光纤的热损伤阈值.在波长为1064 μm处,光纤的模场面积可达2000 μm2,还可实现单模传输,而且其弯曲损耗很小,当弯曲半径为5 cm时弯曲损耗小于05 dB/m.这种光纤对光纤激光器和光纤放大器的发展有重要意义. 关键词: 光子晶体光纤 模场面积 弯曲损耗 限制损耗  相似文献   

18.
We propose a high birefringence and low loss index-guiding photonic crystal fiber (PCF) using the complex unit cells in cladding by the finite-element method. Results show that the birefringence and confinement loss in such PCF fiber is determined not only by the whole cladding asymmetry but also the shape of the PCF core. The maximal modal birefringence and lowest confinement loss of our proposed structures at the excitation wavelength of λ = 1550 nm can be achieved at 8.7 × 10−3 and 5.27 × 10−5 dB/km, respectively.  相似文献   

19.
In this paper, we propose a novel photonic crystal fibre (PCF) with high phase birefringence and very low group birefringence. It is composed of a solid silica core and a cladding with helix-pattern air holes. Using a full-vector finite-element method, we study the phase and group modal birefringence of such PCF at various air-hole sizes, pitches and wavelengths. Owing to this innovative structure of air holes, a high phase to group modal birefringence rate is obtained. Its phase modal birefringence is as large as 10−4 magnitude; however, the group modal birefringence of this PCF is at 10−7-10−6. The phase birefringence is 2 orders of magnitude larger than group birefringence over a broad wavelength span, which means that the light with different polarization and effective index has almost a same group velocity. As a result, the group modal birefringence that closely relates to the polarization modal dispersion is negligible.  相似文献   

20.
提出了一种正方形排列渐增空气孔高双折射光子晶体光纤,并利用多极方法对光纤基模的模场分布、色散、双折射以及损耗特性进行了数值模拟.模拟结果表明利用这种结构可以在包层空气孔层数较少的情况下实现极低的限制损耗,通过调节内层空气孔的分布可以有效地控制光纤的双折射和色散特性.本结果对高双折射光子晶体光纤的制备具有一定的指导意义. 关键词: 光子晶体光纤 双折射 限制损耗 多极方法  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号