首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MWO4:Sm3+ (M = Ca, Sr and Ba) red phosphors with spherical microparticles were successfully prepared via a mild and facile hydrothermal route. The crystal structure and particle morphology were investigated by the X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. Photoluminescence excitation and emission spectra and decay curve were used to characterize the luminescence properties of the MWO4:Sm3+ phosphors. The excitation spectra indicate that MWO4:Sm3+ phosphors can be excited effectively by the UV InGaN light-emitting diode (LED), and the emission spectra show that the phosphors can emit strong red light from 600 to 650 nm. Therefore, it is considered to be a new promising red phosphor for white LED application.  相似文献   

2.
Eu3+-doped ZnAl2O4 phosphors were successfully synthesized in air atmosphere at 900 °C. The phosphors were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermally stimulated luminescence (TSL) and photoluminescence (PL) techniques. The average particle size of the system as determined from SEM was found to be 100–150 nm (for samples annealed at 900 °C). PL spectra of the doped phosphors showed emission peaks corresponding to Eu3+ ions. Lifetime studies revealed Eu3+ ions to be in two different sites. The asymmetric ratio (I616/I592) was observed to be about 3.75. This suggested that Eu3+ ion entered the host mainly substituting Al3+ site distorting the local environment and is partly located on surface of the phosphors. A prominent glow peak at 430 K was observed in the TSL of γ-irradiated Eu3+-doped ZnAl2O4 phosphors. Trap parameters for this peak have been determined and the probable mechanism for the glow peak is proposed. CIE chromaticity coordinates for the system were evaluated. It was observed that, the system could be employed as a potential red emitting phosphor. Commercial utility of the phosphor was investigated by comparing it with commercial red phosphor. The PL intensity of the as prepared phosphors was 63% of that of the commercial phosphor. Apart from this, various radiative properties such as the Judd–Ofelt intensity parameters, spontaneous emission probabilities, luminescence branching ratios, radiative lifetimes and quantum efficiency were evaluated for the system.  相似文献   

3.
Thermoluminescence (TL) characteristics of recently developed high sensitive mixed halosulphate phosphors, NaMgSO4Cl: Cu and NaMgSO4Cl: Ce were studied in comparison with CaSO4: Dy in order to assess the possibility of their use in personal monitoring and TLD phosphors at very low dose of 5 Gy. It was found that NaMgSO4Cl: Cu is 5.59 times and NaMgSO4Cl: Ce is 6.18 times more sensitive as compared to standard CaSO4: Dy. UV photo-excited luminescence from Cu to Ce doped NaMgSO4Cl halosulphate phosphors has been investigated. The intense emission of the spectrum is assigned to electronic transitions 3d94s1→3d10 in monovalent copper ion and 5d→4f in Ce3+ ions. Increase in PL peak intensity suggesting that Cu and Ce play an important role in PL emission in the present matrix. These phosphors were synthesized by the wet chemical method. XRD, photoluminescence (PL) and thermoluminescence (TL) characterization of phosphors has been reported in this paper. The preparation of an inexpensive and high sensitive NaMgSO4Cl: Cu and NaMgSO4Cl: Ce with TL glow peaks for different concentrations are observed between 160 and 195 °C and between 200 and 225 °C, respectively, exposed to gamma-rays of 60Co for their thermoluminescence (TL) properties. The glow curves have been recorded at a heating rate of 2 K s?1 and irradiated at a dose rate of 0.995 kGy h?1 for 5 Gy. In present study the trapping parameters such as order of kinetics (b), activation energy (E) and frequency factors (s) have been calculated for the 195 and 200 °C glow peaks of NaMgSO4Cl: Cu and NaMgSO4Cl: Ce, respectively by using Chen's method. The paper discusses the luminescence of Cu+ and Ce3+ by simple method of incorporation in NaMgSO4Cl host.  相似文献   

4.
New red tungstates phosphors, Na5La1?xLnx(WO4)4 (Ln = Eu, Sm) and Na5Eu1?xSmx(WO4)4, were prepared by solid-state reaction technique. And their structure and photo-luminescent properties were investigated. The introduction of Sm3+ broadened the excitation band around 400 nm of the phosphors, and strengthened the red emission. And the possible energy transfer process from Sm3+ to Eu3+ is discussed. The single red LED was fabricated by combining InGaN chip with Na5Eu0.94Sm0.06(WO4)4 as red phosphor, intense red light can be observed by naked eyes. Then the phosphor Na5Eu0.94Sm0.06(WO4)4 may be a good candidate for red component of near-UV InGaN-based W-LEDs, because of efficient red-emitting with broadened absorption around 400 nm and appropriate CIE chromaticity coordinates (x = 0.65, y = 0.34).  相似文献   

5.
《Current Applied Physics》2010,10(4):1123-1131
Un-doped and (Cu, Fe, and Co)-doped SnO2 were studied using films deposited by spray pyrolysis. Room temperature cathodoluminescence (CL) was measured. Differences in CL spectra were observed as a function of deposition parameters (Tsub-350–550 °C), the nature and concentration of dopants (0–16 at.%), and the resulting high annealing temperature (Tan = 700–950 °C). A possible luminescence mechanism has been discussed. It was established that changes taking place in CL spectra were caused by the change of both the grain size and crystallinity (stoichiometry) of the surface layer. It was concluded that radiative recombination occurs through shallow donor levels associated with O-vacancies and trapped centers. It was assumed that in SnO2 there are apparently three types of defects forming deep levels located at 0.8–0.9, 1.3–1.4, and ∼1.6 eV from the top of the valence band.  相似文献   

6.
Eu2+–Mn2+ codoped Ca-α-SiAlON phosphors, Ca0.736?ySi9.6Al2.4O0.8N15.2:0.064 Eu2+, yMn2+, were firstly synthesized by the high temperature solid state reaction method. The effects of doped Eu2+ and Eu2+–Mn2+ concentrations on the photoluminescence properties of the as-prepared phosphors were investigated systematically. Powder X-ray diffraction shows that pure Ca-α-SiAlON phase is synthesized after sintering at 1700 °C for 2 h under 0.5 MPa N2 atmosphere. The excitation spectra of Eu2+-doped Ca-α-SiAlON phosphors are characterized by two dominant bands centered at 286 nm and 395 nm, respectively. The photoluminescent spectrum of Eu2+-doped Ca-α-SiAlON phosphor exhibits an intense emission band centered at 580 nm due to the allowed 4f 65d→4f 7 transition of Eu2+, showing that the phosphor is a good candidate for creating white light when coupled to a blue LED chip. The intensities of both excitation and emission spectra monotonously decrease with the increment of codoped Mn2+ content (i.e. y value), indicating that energy transfer between Eu2+ and Mn2+ is inefficient in the case of Eu2+–Mn2+ codoped Ca-α-SiAlON phosphors.  相似文献   

7.
The luminescent properties of phosphors are sensitive to the size of phosphor particles. The commercial Y2SiO5:Tb3+ phosphors usually show relatively larger particle size (5–10 μm) due to the irregular morphology of rare earth oxide precursor and thus degrade the luminescent properties. In this paper, we report the Y2SiO5:Tb3+ phosphors synthesized from the uniform Tb-doped Y2O3 precursor by a homogeneous precipitation method. Compared with the commercial phosphors, the obtained Y2SiO5:Tb3+ phosphors manifest the uniform morphology with much smaller particles distributing from 0.8 μm to 1.9 μm. Consequently, the cathodoluminescent intensity under low excitation voltage (1–5 kV) was increased, demonstrating a strong green emission with a dominant wavelength of 545 nm. Our results indicate an effective way to develop the high-quality phosphors for field emission display.  相似文献   

8.
This paper reports on the luminescence properties of mixtures of α- and β-(Sr0.97Eu0.03)2SiO4 phosphors. These phosphors were prepared by 3 different synthesis techniques: a modified sol–gel/Pechini method, a co-precipitation method and a combustion method. The structural and optical properties of these phosphors were compared to those of solid state synthesized powders. The emission spectra consist of a weak broad blue band centered near 460 nm and a strong broad green–yellow band centered between 543 and 573 nm depending on the crystal structure. The green–yellow emission peak blue-shifts as the amount of β phase increases and the photoluminescence emission intensity and quantum efficiency of the mixed phase powders is greater than those of predominant α-phase powders when excited between 370 and 410 nm. Thus, (Sr1?xEux)2SiO4 with larger proportion of the β phase are more promising candidates than single α-phase powders for use as a green–yellow emitting phosphor for near UV LED applications. Finally the phosphors prepared by the sol–gel/Pechini method, which have larger amount of β phase, have a higher emission intensity and quantum efficiency than those prepared by co-precipitation or combustion synthesis.  相似文献   

9.
A series of orange reddish emitting phosphors Eu3+-doped Sr3Bi(PO4)3 have been successfully synthesized by conventional solid-state reaction, and its photoluminescence (PL) properties have been investigated. The excitation spectra reveal strong excitation bands at 392 nm, which match well with the popular emissions from near-UV light-emitting diode chips. The emission spectra of Sr3Bi(PO4)3:Eu3+ phosphors invariably exhibit five peaks assigned to the 5D07FJ (J=0, 1, 2, 3, 4) transitions of Eu3+ and have dominating emission peak at 612 nm under 392 nm excitation. The luminescence intensity was enhanced with increasing Eu3+ content and the emission reached the maximum intensity at x=0.05 in Sr3Bi(PO4)3:xEu3+. The energy transfer behavior in the phosphors was discussed. The Commission Internationale de lEclairage (CIE) chromaticity coordinates, the quantum efficiencies, and the decay curves of the entitled phosphors excited under 392 nm are also investigated. The experimental results indicate that the Eu3+-doped Sr3Bi(PO4)3 phosphors are promising orange reddish-emitting phosphors pumped by near-UV light.  相似文献   

10.
A series of red-emitting light converters Ca1?xSrxS:Eu2+, with tunable composition-dependent emission maxima were synthesized and characterized concerning their photoluminescent (PL) properties. X-ray diffraction patterns, photoluminescence spectra, luminosities and quantum yields were compared for phosphors with strontium concentrations varying from 0 to 100%. The maxima wavelength of emission shifts from 663 down to 619 nm, originating from the dependence of Eu2+ 5d state energy on the surrounding crystal field. Upon increasing the temperature from 20 to 420 K, a broadening of emission spectra along with thermal quenching of emission intensity and quantum yield occurs. Satisfying PL properties and their thermal stability demonstrate that the phosphors could be used as light converters in light emitting diodes (LEDs).  相似文献   

11.
In this paper, effect of Eu3+ doping concentrations on microstructure and photoluminescence of Sr2SiO4 phosphors was investigated. The Sr2?xSiO4:xEu3+ phosphors with x=0.05, 0.1, 0.2, 0.3 were synthesized by microwave assisted sintering at 1200 °C for 60 min in air. X-ray powder diffraction analysis confirmed the formation of pure Sr2SiO4 phase without second phase or phases of starting materials irrespective of the adding amount of Eu3+. From scanning electron microscopy image, it is found that with more Eu3+ ions introduced to Sr2SiO4, the shape of the particles is not much different from each other, but the particle size decreases significantly from 1 to 2 μm (when x=0.05) to less than 500 nm (when x=0.3). The emission spectrum was located obviously at 617 nm as the excitation spectrum at λex=395 nm, and it had best emission intensity when x=0.1.  相似文献   

12.
Natural blue-green beryl from Turkey has been investigated using scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD) and Cathodoluminescence (CL). Beryl has the chemical formula Be3Al2Si6O18 and is hexagonal with space group P6/mcc. Chemical analyses of the beryl sample utilised inductively coupled plasma-atomic emission spectroscopy (ICP-AES) for major oxides and trace elements. It shows that the beryl sample is rich in Cs (531 ppm) and contains low concentrations of transition-metal ions, in total 2.29 wt.% Fe, 269 ppm Mn, V<5 ppm and Cr 20 ppm. Ideas on the origin of the green colour of this mineral are presented. The CL spectrum of the bulk sample display intense broad band emission from ~360 to ~800 nm.  相似文献   

13.
Europium (III) ions doped red phosphors K4Ca(PO4)2 were prepared first time by high temperature solid state reaction method. The prepared phosphors structure was examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses. The thermal properties of the synthesized phosphor were investigated by differential scanning calorimetry (DSC) analysis. Photoluminescence (PL) spectra of K4Ca(PO4)2:Eu3+ phosphors have shown strong red emission at 618 nm (5D07F2) with near UV an excitation wavelength of λexc=394 nm (7F05L6). In addition, the decay curves and CIE color coordinate measurements are also carried out. Hence, emission and excitation characterization of synthesized phosphors shows that the phosphors may be a promising red component for the application in the white light emitting diodes (WLEDs).  相似文献   

14.
The Y0.95?xAlxVO4:5%Eu3+ (0≤x≤0.1) phosphors were successfully synthesized by solid state reaction at 900 °C for 6 h, and their luminescence properties were investigated under UV and VUV excitation. Monitoring at 619 nm, a strong broad absorption was enhanced by co-doping of Al3+ into the YVO4:Eu3+ lattices at 256 nm under UV excitation. The VUV excitation spectra also showed the enhanced excitation bands at about 156 and 200 nm. Under 254 or 147 nm excitation, it was found that Y0.95?xAlxVO4:Eu3+(0≤x≤0.1) phosphors showed strong red emission at about 619 nm corresponding to the electric dipole 5D0–7F2 transition of Eu3+. The improvement of luminescence intensity of YVO4:Eu3+ was also observed after partial substituting Y3+ by Al3+ and the optimal luminescence intensity appeared with incorporation of 2.5 mol% Al3+.  相似文献   

15.
Eu3+-doped Sr2Si1?xGexO4 (x=0–1) phosphors have been prepared by the high temperature solid-state reaction method. The luminescent properties of these phosphors were investigated. Red fluorescence of Eu3+ is enhanced gradually in the samples with increasing substitution of Si by Ge upon the excitation of 393 nm light. The intensity is increased by 50% with full substitution of Si by Ge. These results are originated from the structural changes and the phonon energy reduction in the samples due to the substitution of Si by Ge. The CIE chromaticity coordinates of the phosphors vary slightly around (0.62, 0.37) and all are in the red color region. The results indicate that these phosphors could be promising red phosphors for white light emitting diodes.  相似文献   

16.
The materials Sr3−x(VO4)2:xYb were successfully synthesized by co-precipitation method varying the concentration of Yb3+ ions from 0 to 0.06 mol. It was characterize by powder X-ray powder diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied by spectrophotometers in near infra red (NIR) and ultra violet visible (UV–VIS) region. The Yb3+ ion doped tristrontium vanadate (Sr3(VO4)2) phosphors that can convert a photon of UV region (349 nm) into photons of NIR region (978, 996 and 1026 nm). Hence this phosphor could be used as a quantum cutting (QC) luminescent convertor in front of crystalline silicon solar cell (c-Si) panels to reduce thermalization loss due to spectral mismatch of the solar cells. The theoretical value of quantum efficiency (QE) was calculated from steady time decay measurement and the maximum efficiency approached up to 144.43%. The Sr(3−x) (VO4)2:xYb can be potentiality used for betterment of photovoltaic (PV) technology.  相似文献   

17.
This paper reports ultrasound-assisted optical imaging of chemiluminescent probes in biological tissue. A focused low power ultrasound sonochemically enhances a peroxyoxalate chemiluminescence (CL) that involves indocyanine green (ICG) as luminescent pigments. By scanning the focus, it produces tomographic images of CL in scattering media. The authors demonstrate imaging using a slab of porcine muscle measuring 50 × 50 × 75 mm, in which a capsuled CL reagent is embedded at 25 mm depth. Spatial resolution of imaging and concentration characteristics of CL reagents to enhanced CL intensity are also studied to evaluate the potential for use in bio-imaging applications with exploring the CL enhancement mechanisms. CL enhancement ratio, defined as the ratio of ultrasonically enhanced CL intensity to the base intensity without ultrasound irradiation, was found to be constant even in varying ICG and oxidizer concentrations, implying to be applicable for quantitative determination of these molecules.  相似文献   

18.
Hexagonal Ba1.20Ca0.8?2x?ySiO4:xCe3+,xLi+,yMn2+ phosphors exhibit two emission bands peaking near 400 and 600 nm from the allowed f–d transition of Ce3+ ions and the forbidden 4T16A1 transition of Mn2+ ions, respectively. The strong interaction between Ce3+/Mn2+ ions is investigated in terms of energy transfer, crystal field effect, and microstructure by varying their concentrations. They show a higher quenching temperature of 250 °C than that of a commercially used (Ba,Sr)2SiO4:Eu2+ phosphor (150 °C). Finally, mixtures of these phosphors with green-emissive Ba1.20Ca0.70SiO4:0.10Eu2+ are tested and yielded correlated color temperatures from 3500 to 7000 K, and color rendering indices up to 95%.  相似文献   

19.
The alkaline phosphate based LiNa3P2O7:Tb3+ phosphors are prepared by solid state reaction method. X-ray diffraction (XRD) analysis shows that all the powders possess orthorhombic structure. Fourier transform infrared (FTIR) spectroscopy studies suggest that the phosphor belong to the diphosphate family. The morphology of the phosphors is identified by scanning electron microscopy (SEM). Upon 378 nm excitation, the LiNa3P2O7:Tb3+ phosphors shown emission bands at 482, 545, 588 and 620 nm corresponding to the transitions 5D47F6, 5D47F5, 5D47F4 and 5D47F3, respectively. The optimized concentration of Tb3+ in LiNa3P2O7 phosphor is found to be 9 mol%. The concentration quenching mechanism was proved to be the exchange interaction between two nearest Tb3+ ions with the critical distance (Rc) of 1.18 nm. The Commission International de l'Eclairage (CIE) coordinates evidence that the phosphors emit in the green light region. Thermoluminescence properties of the prepared phosphors are studied by pre-irradiating the powders with different doses of UV irradiation. The kinetic parameters of TL glow curves are calculated using Chen's peak shape method.  相似文献   

20.
This work reports the development of new types of UV-emitting phosphors based on single crystalline films (SCF) of aluminum garnet and perovskite compounds grown by the liquid phase epitaxy method. We consider peculiarities of the growth and the luminescent and scintillation properties of the following four types of UV SCF phosphors: i) Ce-doped SCF of Y–Lu–Al-perovskites with the Ce3+ emission in the 300-450 nm range of the decay time of 16–17 ns; ii) Pr-doped SCF of Y–Lu–Al garnets and perovskites with the Pr3+ emission in the 300–400 nm and 235–330 nm ranges with the decay time of 13–19 and 7–8 ns, respectively; iii) La3+ or Sc3+ doped SCF of Y–Lu–Al-garnets, emitting in the 280-400 nm range due to formation of the LaY,Lu, ScY,Lu and ScAl centers with decay time of the order of several hundreds of nanoseconds; iv) Bi3+ doped SCF of garnets with Bi3+ emission in 275–350 nm with decay time of about 1.9 μs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号