首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fabrication of nanocomposites by covalent inclusion of inorganic nanoparticles in an organic polymer matrix is highly topical and may find applications in the electronics, optics and energy sectors. Incorporation of CdS nanoparticles into the polyacrylonitrile (PAN) matrices could be expected to display improved or enhanced optoelectronic and optical properties. Using a newly synthesized RAFT agent, i.e., CdS-DDAT nanoparticles (DDAT: S-1-Dodecyl-S′-(α, α′-dimethyl-α′′-acetic acid) trithiocarbonate), CdS covalently functionalized polyacrylonitrile (CdS-PAN) nanocomposite material was prepared in the presence of small amount of AIBN under ultrasonic radiation. This material, which exhibits an induced positive nonlinear absorption of incident light, has been well-characterized by a variety of physical techniques such as GPC, UV/vis, FT-IR, TGA, XRD and Z-scan.  相似文献   

2.
The combination of metal ions with H3tbba has resulted in the formation of two three dimensional coordination compounds {[Zn(H2tbba)2(H2O)] · 2(OC3H6)} n (1) and {[Mn(H2tbba)2(H2O)] · 2(OC3H6)} n (2) (H2tbba = 2-thiobarbituric acid anion). Compounds 1 and 2 are isostructural with metal ions bridged by four hydroxyl oxygens from four different H2tbba ligands to form a 3D network. H2tbba exhibits bidentate coordination with both hydroxyl oxygens participating in coordination, a new coordination mode. Nonlinear absorption and refraction of 1 and 2 in DMF are studied by using Z-scan measurement technique at 532 nm. 1 and 2 possess nonlinear optical absorption and self-focusing.  相似文献   

3.
High purity NaGe was directly prepared by a low-temperature reaction of NaH and Ge. The product was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy. This material is a useful starting reagent for the preparation of Ge nanoparticles. Hydrogen-terminated germanium (Ge) nanoparticles were prepared by reaction of NaGe with NH4Br. These Ge nanoparticles could be prepared as amorphous or crystalline nanoparticles in quantitative yields and with a narrow size distribution. The nanoparticles were functionalized via thermally initiated hydrogermylation with 1-eicosyne, CH3(CH2)17C≡CH to produce alkyl-terminated Ge nanoparticles. The modified Ge nanoparticles were characterized by powder XRD, transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and Raman spectroscopy, and photoluminescence (PL) spectroscopy. The alkyl-functionalized Ge nanoparticles can be expected to have promising applications in many technological and biological areas.  相似文献   

4.
Cu nanoparticles were synthesized by solution reduction process successfully. The influence of parameters on the size of Cu nanoparticles was studied and the referential process parameters were obtained. The morphology and structure of the synthesized Cu nanoparticles were characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), QELS data, infrared spectroscopy (IR) and solid state UV. The average size of nanoparticles was found between 15 ± 2 nm.  相似文献   

5.
Cadmium dithiocarbamate and cadmium ethyl xanthate complexes were synthesized and characterized by microanalysis, Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric analyses. The complexes were employed as molecular precursors for the fabrication of CdS nanoparticles in hexadecylamine (HDA) and oleylamine (OLA) at a temperature of 250 °C. Spherical and oval shaped particles with sizes ranging from 9.93 ± 1.89 to 16.74 ± 2.78 nm were obtained in OLA while spherical, oval and rod shaped particles with sizes ranging from 9.40 ± 1.65 to 29.90 ± 5.32 nm were obtained in HDA. Optical properties of the nanoparticles showed blue shifts as compared to the bulk CdS, with the OLA capped nanoparticles slightly more blue shifted than the corresponding HDA capped nanoparticles. Results of crystallinity patterns revealed hexagonal phase of CdS.  相似文献   

6.
Ionothermal synthesis was used to prepare a novel amino acid containing hybrid zincophosphate monomer,[Zn(HPO4)(H2PO4)][C6H10N3O2](denoted as ZnPO-CJ58).The inorganic framework of [Zn(HPO4)(H2PO4)]·[C6H10N3O2] consists of 4-membered rings formed by ZnO3OHis and PO2(OH)2 tetrahedra.The HPO4 and amino acid moieties hang on the Zn center.Such a framework is stabilized by extensive multipoint hydrogen bonds involving the phosphate units and histidine molecules to form a pseudo-3D supramolecular structure.It is ...  相似文献   

7.
This Minireview systematically examines optical properties of silver nanoparticles as a function of size. Extinction, scattering, and absorption cross-sections and distance dependence of the local electromagnetic field, as well as the quadrupolar coupling of 2D assemblies of such particles are experimentally measured for a wide range of particle sizes. Such measurements were possible because of the development of a novel synthetic method for the size-controlled synthesis of chemically clean, highly crystalline silver nanoparticles of narrow size distribution. The method and its unique advantages are compared to other methods for synthesis of metal nanoparticles. Synthesis and properties of nanocomposite materials using these and other nanoparticles are also described. Important highlights in the history of the field of metal nanoparticles as well as an examination of the basic principles of plasmon resonances are included.  相似文献   

8.
A wet chemical approach was employed for the preparation of LiEu(PO(3))(4) nanoparticles. XRD, Raman spectroscopy, TEM, SAED, and IR measurements were used in order to determine the crystal structure and morphology of the obtained product. Complete optical studies including absorption, excitation, emission, and kinetic measurements were performed. At least two components of the (5)D(0) → (7)F(0) transition were found, indicating the existence of more than one crystallographic position of the Eu(3+) ions. Asymmetry parameter R as well as the covalence of the Eu-O bond were found to decrease with the grain growth.  相似文献   

9.
Blue-emitting colloidal CdS nanocrystals have been synthesized through the solvothermal reaction of cadmium acetate and thiourea in N,N-dimethylformamide using poly(ethylene oxide; PEO) as the stabilizing polymer. The as-prepared CdS colloids were stable at ambient conditions for several weeks. The PEO-stabilized CdS colloids showed a narrow fluorescence band with the maximum at about 420 nm and thus emitting blue fluorescence under the ultraviolet (UV) lamp. A common red shift of fluorescence band is not detected for the prepared CdS colloids in the study, indicating that PEO-stabilized CdS NCs possess few crystalline defects on their surface. In addition, transmission electron microscope micrographs reveal that the sizes of CdS NCs are between 4.4 to 5.4 nm with small standard deviations from 0.5 to 0.7 nm. The particle growth kinetics was studied by monitoring UV-visible absorption onsets versus the reaction time and was found to nearly follow the Lifshitz–Slyozov–Wagner theory for the Ostwald ripening mechanism.  相似文献   

10.
11.
《印度化学会志》2023,100(5):100990
The emerging upconversion nanoparticles (UCNP) have gained substantial consideration in the field of bioanalytical as well as diagnostic applications. Therefore, great progress has been made in the synthesis and surface modification of luminescent UCNPs over the last two decades. In this paper, we have reported monodispersed and high luminescent upconversion nanoparticles NaYF4: 20%Yb3+, 2%Tm3+ have been synthesized using a solvothermal method, followed by a coating of the NaYF4 shell with a thin layer of SiO2 on the surface to afford the core-shell NaYF4:Yb3+, Tm3+@SiO2 nanoparticles (NP@SiO2). The prepared nanoparticles were of strong upconversion fluorescent emission intensity, hexagonal phase, and with an average size of about 8 ± 1 nm, which have been characterized by luminescence spectroscopy, powder X-ray diffraction (P-XRD), Dynamic light scattering (DLS), and Transmission electron microscopy (TEM). The results indicate that the NP@SiO2 can be used for the conjugation of fluorescent probes for various biomolecules and can find applications in cancer cell imaging and disease diagnosis.  相似文献   

12.
《印度化学会志》2023,100(1):100855
The objective of the study is to synthesize Zinc Sulphide nanoparticles (ZnS) with different amino acid capping agents in aqueous solution by a simple and cost effective facile chemical co precipitation method and analyze their optoelectronic features. Bio compatibility with less toxic amino acids such as l-Glutamic acid, l-Alanine and l-Asparagine were used as capping agents. These amino acids are from Non-essential amino acid group and its capping behavior suitable for semiconducting nanoparticles like ZnS. The role of non essential amino acids were to stabilize the nanoparticle against agglomeration and also to provide chemical passivation that leads to a significant influence on the improved structural, optical and photoluminescence properties of ZnS nanoparticles. The detailed structural analysis of Zinc Sulphide nano particles revealed by X-ray diffraction method (XRD). From this analysis observed the formation of Cubic ZnS nanoparticles with an average crystallite size in the range of 2.08–2.22 nm.The morphology of the nano particles studied by Field emission scanning electron microscope (FESEM). Particle size examined by Dynamic Light scattering studies (DLS) and which revealed that particle size ranges are below 50 nm. The functional groups of nanoparticles were identified by Fourier transform Infrared spectroscopy (FT-IR) studies. Photoluminescence studies attributed that the considerable emission bands. The UV–Vis analysis disclosed the optical band gap range from 3.77 eV to 3.95 eV.  相似文献   

13.
The Pd(II) complexes of 1-aryl-5-benzazolyl- and 1,5-dibenzimidazolylformazans are synthesized and characterized by UV and IR spectroscopy, mass spectrometry, and magnetochemical studies. The complexes exhibit the intense absorption in the near-IR spectral region (820–1020 nm). The interaction of the complexes with amines leads to the transformation into binuclear palladium formazanates, which absorb at 620–680 nm and whose structures were confirmed by X-ray diffraction analysis.  相似文献   

14.
Abstract

Lead(II) methyl xanthate [Pb(S2COMe)2] was synthesized and characterized by single crystal X-ray crystallography. The molecular structure showed a distorted tetrahedral geometry around Pb(II) with each monomeric unit linked with another through Pb···S interactions. The compound was used to prepare hexadecylamine capped PbS (HDA-PbS) and oleylamine capped PbS (OLA-PbS) nanoparticles. The PbS nanoparticles were indexed to the cubic PbS crystalline phase with particle sizes of 4.5 – 34.5?nm. The estimated optical bandgaps obtained from the tauc’s plots were 3.47 and 3.30?eV for HDA-PbS and OLA-PbS, respectively, which are blue shifted in comparison to bulk PbS. The photodegradation of methylene blue using PbS as photocatalyst shows that HDA-PbS have the best degradation efficiency of 77.70% after 240?min.  相似文献   

15.
The first example of the condensation of (ferrocene)-N-benzhydrylamino-methanephosphonous acid (1) with α-amino acids 2a-d and several model dipeptides 4a-d and the tripeptide dl-alanyl-dl-leucinyl-glycine (4e) in the presence of DCC resulted in pseudo-phosphono-dipeptides 3a-d and pseudo-phosphono-oligopeptides 5a-d. The probable chiral assistance of the incoming amino acid or peptide in the formation of the new chiral center on phosphorus was also a feature of this method.  相似文献   

16.
Photoluminescent nanoparticles of gold with size 3, 4, 6, and 9nm are prepared by borohydride/citrate reduction in presence of polyethylene glycol (PEG)/tannic acid. The prepared nanomaterials are characterized by UV-vis spectroscopy and dynamic light scattering (DLS) technique. Intense photoluminescence (PL) is observed in nanoparticles prepared by fast reduction with borohydride in presence of PEG. A red shift of PL emission from 408 to 456nm is observed for the change of size from 4 to 6nm. Increase in PL intensity is observed for all the nanoparticles on the addition of KCl. Citrate reduced gold colloid which consists of large particles of size approximately 35nm with anisotropic shapes showing two plasmon peaks is also prepared. The anisotropy is confirmed by TEM measurement. SERS activity of this colloid is tested using glutamic acid as an adsorbate probe. Assignment of the observed bands is given.  相似文献   

17.
本文以1,10-phenanthroline为第二配体,Nd2O3与芳香羧直接反应合成了四种芳香羧酸钕配合物:NdF3phen(F:呋喃-2-甲酸、phen:1,10-phenanthroline)、NdT3phen(T:噻吩-2-甲酸)、NdB3phen(B:苯甲酸)、NdN3phen(N:1-萘甲酸).产物用FTI...  相似文献   

18.
Four new lanthanide coordination polymers, [Y(Hnip)(nip)(H2O)]·H2O (1), [Ln(Hnip)(nip)(H2O)2]·2H2O [Ln=Eu(2), Tb(3)] and [Y(nip)2]·(H24,4′-bpy)0.5 (4) [5-nip=5-nitroisophthalate, 4,4′-bpy=4,4′-bipyridine], have been hydrothermally synthesized and structurally characterized. Compound 1 features novel lanthanide-carboxylate groups chains composed of three samehanded helical strands intersecting each other through hinged lanthanide atoms, and these chains are cross-linked by phenylene moieties of carboxylate ligands into a 2D layer structure. Compounds 2 and 3 are isomorphous, and contain 1D catenanelike Ln-O-C-O-Ln chains, which are interconnected by phenylene moieties into 2D layer structures. Compound 4, however, displays a 3D architecture sustained by strong hydrogen bonding interactions between the protonated 4,4′-bpy and the carboxyl oxygen atom from [Y2(nip)4]2− with 2D layer structure, and 4,4′-bpy as the guest molecules exist in bilayer channel. The studies for the thermal stabilities of the four compounds show that compound 4 is more stable than other compounds. Compound 2 emits characteristic red luminescence of Eu3+ ions at room temperature, and its luminescent lifetime and quantum efficiency has been determined.  相似文献   

19.
Composite nanoparticles representing silver nanoparticle-containing polymer gels have been synthesized. The synthesis comprises two main stages. Initially, monodisperse hydrogel particles with a controlled diameter of approximately 500 nm are obtained by N-isopropylacrylamide polymerization. Then, silver ions are reduced on the surface of the polymer network. Variations in the concentration ratio between reductants and silver nitrate make it possible to produce silver nanoparticles with sizes in a range of 10–30 nm and different packing densities on the gel particle surface. The resultant nanocomposites have been studied by transmission electron microscopy, spectrophotometry, and dynamic light scattering. Depending on the size and packing density of the silver nanoparticles on the polymer particle surface, the plasmon resonance of the nanocomposites varies in a range of 420–750 nm, which determines variations in the color of the colloid from yellow, orange, and red to blue and blue-green. After the inclusion of silver nanoparticles, nanogels of poly(N-isopropylacrylamide) retain their capability for thermosensitive phase transition with a lower critical mixing temperature of 31°C.  相似文献   

20.
A tetrasilver(I) phosphonitocavitand was synthesized and structurally characterized. The compound crystallizes in the monoclinic space group P21/n with a=15.0151(13), b=39.832(4), c=15.2479(14) Å, β=95.1000(2)°, V=9083.3(14) Å3 and Z=4. The structure contains four coplanar silver atoms bridged by four μ-Cl and one central trapped μ4-Cl atoms in the inside of the closing bowl-shaped cavitand. Nonlinear optical properties of this metal-cavitand were investigated. Optical limiting effect with threshold of 0.6 J cm−2 was observed with the laser pulses of 7 ns at 532 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号