首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
During interventional radiology (IR) and cardiology (IC) procedures, medical staff can receive high doses to their eye lenses. The Retrospective Evaluation of Lens Injuries and Dose study organized in Argentina in 2010 found incipient opacity in 50% of IC physicians and 41% of IC technicians/nurses. These results, added to the recommendations of the International Commission on Radiological Protection, which lowered their former occupational equivalent dose limit for the lens, led us to assess the eye lens dose, Hp(3), during interventional procedures.To this end, a new dosemeter was designed and calibrated at the National Atomic Energy Commission of Argentina to evaluate Hp(3). Personal dose equivalent (Hp(10)), and Hp(3) were assessed for 3 months in two IC and IR departments. An Alderson phantom was used to simulate monthly exposures of five occupational staff members.Hp(3) and Hp(10) were obtained monthly for 14 occupational staff members exposed to 121 IR and IC procedures. We concluded that the annual effective dose and Hp(3) were lower than 0.3 and 10 mSv, respectively and the average cumulative Hp(3) for working life was lower than 400 and 200 mSv for physicians and technicians/scrub nurse, respectively. An occupational annual dose constraint of 0.3 mSv was calculated.  相似文献   

2.
The individual monitoring service Seibersdorf uses two different passive dosemeter types based on thermo luminescence (TL) detectors for monitoring occupationally exposed persons in Austria. Whole body personal dosemeters for the personal dose equivalent quantities Hp(10) and Hp(0.07) worn on the trunk and dosemeters for the extremities for Hp(0.07) worn on a finger or wrist. Both routine dosemeters were calibrated and tested in terms of the personal dose equivalent Hp(3) assuming that the whole body dosemeter is worn on the chest (without or above a lead apron) and the modified ring/wrist dosemeter using a special strap worn on the forehead near the eyes (head band dosemeter). The test results show that it is possible to measure the dose quantity Hp(3) with these dosemeters that were originally not designed for this dose quantity. Only changes in the dose calculation algorithm and in the choice of the reference radiation quality were necessary to fulfil the requirements given in international standards for passive dosemeters in a wide energy (20 keV–1.3 MeV) and angular range (0°–60°).  相似文献   

3.
Patient kerma–area product PKA, cumulative kerma in the air KIRP, fluoroscopic time t, personal dose equivalent (in terms of Hp(10), Hp(0.07) and Hp(3)) for most common interventional cardiology procedures were measured. PKA and KIRP measurements were used for patients and thermoluminescent dosimetry for the personnel. Dosemeters for personal doses measurements containing MCP-N (LiF: Mg, Cu, P) type thermoluminescence detectors (TLDs), were read out at the Institute of Nuclear Physics Polish Academy of Science (IFJ PAN) dosimetry service.The patient and personal doses were similar to those reported by other authors. The mean values of total kerma–area product (PKA) were 22.7 (7.3–50.9) Gy·cm2 for coronary angiography (CA) and 43.1 (3.2–86.4) Gy·cm2 for percutaneous coronary intervention (PCI). In general, doses received by the staff performing PCI procedures were found to be systematically higher than those after CA procedures, by some 30% or more. Within the medical team, operators always received the highest doses, followed by nurses and technicians. Maximum eye lens doses, skin doses and whole body doses were 165 μSv, 962 μSv and 30 μSv per procedure, respectively. Annual eye lens doses received by the operators, especially in PCI procedures, may well exceed the value of the recently recommended annual dose limit of 20 mSv and should be monitored.No meaningful correlation could be established between occupational doses and patient exposure, however some degree of correlation was observed between values of dose to the eye lens and whole body dose.  相似文献   

4.
The badge system of personal thermoluminescence (TL) dosimeter for photon fields using LiF:Mg,Cu,Na,Si TL material, which was developed by Korea Atomic Energy Research Institute (KAERI) a few years ago, was developed by taking advantage of its dosimetric properties including energy dependencies. A badge filter system was designed by practical irradiation experiments supported by computational modeling using Monte Carlo simulation. Design properties and dosimetric characteristics such as photon energy response and angular dependence of new TL dosimeter system examined through the irradiation experiments are presented. Based on the experiments for the developed dosimeter, it is demonstrated that the deep dose response of dosimeter provided the value between 0.78 and 1.08, which is within the design limit by ISO standard. This multi-element TL dosimeter badge system allows the discrimination of the incident radiation type between photon and beta by using the ratios of the four TL detectors. Personal TL dosimeter using sintered LiF:Mg,Cu,Na,Si TL detectors has the ability to measure a personal dose equivalent Hp(d) for a wide range of photon energies.  相似文献   

5.
The critical current density Jc of some of the superconducting samples, calculated on the basis of the Bean’s model, shows negative curvature for low magnetic field with a downward bending near H = 0. To avoid this problem Kim’s expression of the critical current density, Jc = k/(H0 + H), where Jc has positive curvature for all H, has been employed by connecting the positive constants k and H0 with the features of the hysteresis loop of a superconductor. A relation between the full penetration field Hp and the magnetic field Hmin, at which the magnetization is minimum, is obtained from the Kim’s theory. Taking the value of Jc at H = Hp according to the actual loop width, as in the Bean’s theory, and at H = 0 according to an enhanced loop width due to the local internal field, values of k and H0 are obtained in terms of the magnetization values M+(?Hmin), M?(Hmin), M+(Hp) and M?(Hp). The resulting method of estimating Jc from the hysteresis loop turns out to be as simple as the Bean’s method.  相似文献   

6.
To study the influence of glare on the visual performance of a subject wearing an ophthalmic lens, it is useful to know how the lens affects the illuminance reaching the eye. In this paper, considering spherical standard ophthalmic lenses and defining the relative illuminance, Er, as the quotient between the illuminance at the cornea with and without lens, a methodology to evaluate Er in terms of easily determined parameters is developed. Three effects are considered, pupil size variation of the system with and without lens; lateral shifts of rays transmitted through the lens and reflections at the lens. Calculations are experimentally verified employing 5 organic ophthalmic lenses of ±6; ±4 and 0.12 dioptres and 2 glass plane parallel plates 1.95 and 6.6 mm thick. Using a photometer whose sensor is 12 mm apart from the lens and 740 mm apart from a glare source subtending an eccentricity angle of 9.6°, it results Er=1.204 for the 6 dioptres lens and Er=0.803 for the −6 dioptres one if sensor diameter is 10 mm while, for a 719 mm distance and a 10° angle, Er=0.922 for the thin plate and a 30 mm sensor and Er=1.006 for the thick plate and a 10 mm sensor. Experimental and theoretical results differ in less than 3%.  相似文献   

7.
Several types of casks have been deposited in the German interim storage facility for spent fuel assemblies and vitrified high-active waste (HAW) at Gorleben since 1995, most of them of the CASTOR® type. In 2008 a delivery of 11 TN85-type casks arrived. They belong to the Transnuclear/Areva cask family and, compared to the flasks of the German (GNS) CASTOR® type, they differ in the neutron shielding design.Generally, radiation exposure of personnel during transportation and storage of casks containing spent fuel and vitrified waste is caused by mixed photon/neutron fields. Frequently, especially at casks for vitrified waste from reprocessing, neutrons are the major component of radiation exposure.Spectrometric and dosimetric investigations were made around a cask of the TN85-type. Neutron fluence spectra and reference values of the ambient dose equivalent H*(10) were measured by means of a Bonner sphere spectrometer (BSS) at several locations on the cask surface and in its environment. Moreover, commercial area dosemeters, LB6411 neutron monitors and conventional AD 6-type photon dosemeters were used. In addition, the responses of two electronic personal dosemeters for mixed fields (EPD-N2, DMC 2000GN) and a TLD albedo dosemeter were investigated.The neutron spectra obtained from the BSS are presented and compared with former measurements at CASTOR® type casks. The relative responses of the LB6411 survey meter and the individual dosemeters are discussed. The LB6411 monitor indicates H*(10) around the TN85 cask with tolerable measuring uncertainties. The personal dosemeters provide acceptable results for photons but overestimate the neutron dose considerably.  相似文献   

8.
Electric arc 30t melts, deoxidised with Mn and Si, are compared to melts additionally deoxidised with cerium. In a cyclic damp heat test the melts with Ce show better corrosion behaviour. μ4 (DC) and Hc of samples of 1.0 mm thickness after heat treatment at 1080°C vary in the same range of values for both categories of melts. After heat treatment at 1080°C or 1180°C μ4 (50 Hz) and Hc of samples of 0.2 mm thickness are impaired by 20% or more for melts with Ce. For melts with Ce the strong binding of the sulphur to the deoxidiser impedes desulphurization. With small strip thicknesses, the strong binding energy of Ce to oxygen causes additional internal oxidation during heat treatment . Both deteriorate the magnetic properties. At the larger thickness of 1.0 mm there is no noticeable internal oxidation and/or desulphurization in both categories of melt due to the strip thickness.  相似文献   

9.
(Gd,Y)Ba2Cu3Ox tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0–15 mol.% and Ce doping levels of 0–10 mol.% in 0.4 μm thick films. The critical current density (Jc) of Zr-doped samples at 77 K, 1 T applied in the orientation of H 6 c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (Jc) of 0.95 MA/cm2 at H 6 c which is more than 70% higher than the Jc of the undoped sample. The peak in Jc at H 6 c is 83% of that at H 6 ab in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (Tc) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different Jc values as well as angular dependence characteristics.  相似文献   

10.
Determination and understanding the photon beam attenuation by the photon beam modifier and the radiation beam softening for clinical use is more important part of material study for the beam modifier enhancements and the linac improvements. A Monte Carlo model was used to simulate 6 MeV photon beams from a Varian Clinac 2100 accelerator with the flattening filter and the later was replaced by the aluminum slab with variable thickness. The Monte Carlo geometry was validated by a gamma index acceptance rate of 99% in PDD and 98% in dose profiles, the gamma criteria was 3% for dose difference and 3 mm for distance to agreement. The purpose was to investigate aluminum material attenuation and beam softening coefficients as a function of the inserted aluminum slab thickness and of off-axis distance. The attenuation and beam softening coefficients were not identical for the same off-axis distance and they varied as a function of aluminum slab thickness. The results of our study were shown that the beam softening coefficients were varied with thickness beam modifier material used for beam softening and the off-axis distance inside the irradiation field. Thereafter, the softening coefficient a 1 have a maximum of 2.5 × 10–1 cm–1 for the aluminum slab thickness of 1 mm, 1.4 × 10–1 cm–1 for the aluminum slab thickness of 1.5 mm and 4.47 × 10–2 cm–1 for the aluminum slab thickness of 2 mm. The maximum of the second softening coefficient a 2 was 1.02 × 10–2 cm–2 for the aluminum slab thickness of 1 mm, was 1.92 × 10–2 cm–2 for the aluminum slab thickness of 1.5 mm and was 1.93 × 10–2 cm–2 for the aluminum slab thickness of 2 mm. Our study can be a basic investigation of photon beam softening material that will be used in the future linac configuration and also in the photon beam modifiers.  相似文献   

11.
The giant magneto-impedance (GMI) ratio, ΔZ/Z=[(Z(H)−Z(Hmax)]/Z(Hmax), in a nearly zero magnetostrictive Co68.5Mn6.5Si10B15 amorphous microwire has been investigated for the frequency range 0.5–10 MHz, driving current amplitude of 0.5–2.5 mA, bias DC magnetic field up to 2400 A/m and under applied tensile stress up to 132 MPa. A maximum relative change in the GMI ratio up to around 130% is observed at a frequency of 10 MHz, magnetic DC field of about 180 A/m, driving current amplitude of 1 mA and under tension of 60 MPa. The tensile stress dependence of the magnetic field, Hm, corresponding to the maximum ΔZ/Z ratio allows to estimate the magnetostriction constant (λs≈−2×10−7) to be in good agreement with λs values estimated by different methods and in amorphous alloys with similar compositions.  相似文献   

12.
We have developed a numerical technique to estimate the current carrying capability of HTS Roebel cable composed from coated conductor strands. The influence of self-field on the critical current density is studied computationally for a Roebel cable using a realistic field and angle dependence behaviour of critical current. The computations are carried out for N/2 (number of strands/strand width in mm), and N/5 Roebel cable for N = 2–15. The local current distribution in each strand satisfies the self-consistent criteria J = Jc(B(J)) except for a small region where the current density is set to zero to maintain the condition of equal currents in all strands. The variation of critical current with vertical and horizontal separation between the strands is also investigated. Results are compared with the measured values of critical current for some of our cables. The comparison shows an error of up to 10% which we attribute mostly to the model not accounting for the spread in Ic values of the constituent strands.  相似文献   

13.
The effective atomic number (Zeff) and electron density (Nel) of hydroxyapatite (HA) and cortical bone have been computed for total photon interaction in the wide energy range of 1 keV–100 GeV using WinXCom. The variations of effective atomic number and electron density with energy of HA are compared with that of cortical bone. GP. fitting method has been used to compute energy absorption and exposure build-up factor of HA for wide energy range (0.015 MeV–15 MeV) up to the penetration depth of 40mean free path. The computed absorption build-up factor is used to estimate specific absorbed fraction of energy (Ф) and relative dose of photon in HA. Build-up factor increases with increase of penetration depth. The results of the present paper will also help in estimating safe dose levels for radiotherapy patients and also will be useful in dosimetry and diagnostics.  相似文献   

14.
《Radiation measurements》2000,32(3):201-204
The dose under small air gaps located under bolus material of up to 10 mm have been measured with an Attix parallel plate ionization chamber and radiochromic film. For a 6 MV x-ray beam with 10 mm bolus, an air gap of 2 mm produced no reduction in skin dose when measured with the Attix chamber. An air gap of 4 mm will introduce a reduction of dose to the basal layer of approximately 0–4% depending on field size, angle of incidence and other patient specific parameters and a reduction of up to 10% could be seen at the basal cell layer for a 10 mm air gap. The 10% reduction was for a small x-ray field at 60 degrees angle of incidence and was a reduction in dose from 100% of Dmax down to 90% of Dmax. Results at oblique angles of incidence show that larger reductions in dose are seen with increasing angle of incidence. Radiochromic film results agree with the Attix chamber results measuring 2%±2% decrease for a 4 mm gap and 4%±2% for a 10 mm gap at normal incidence. Clinically, results show that small air gaps can reduce skin dose, however, at least 90% of maximum dose is still delivered for air gaps up to 10 mm.  相似文献   

15.
Magnetic measurements were made using pure YBCO and Zn doped YBa2(Cu1?xZnx)3O7?σ. Single crystals with Zn concentration of 0.5%, 1.5%, 3.0% and 4.3%. The magnetic hysteresis loops for these samples were measured in the temperature range 0.1 ? T/Tc ? 0.96 under magnetic fields of 5 T using SQUID. It was found that the critical current density Jc increased for low Zn content samples up to 3% Zn concentration compared to pure YBCO sample and decreased for the higher Zn content samples. These values varied consistently when compared at magnetic fields of 1 T and 3 T. Moreover Zn doped samples showed significant values of Jc in the temperature range of 0.7–0.9Tc, close to critical temperature compared to pure YBCO sample. The irreversibility field Hirr was also enhanced in this temperature range showing consistent decrease with increase of Zn concentration. The peak field Hp above Hc1 and irreversibility field Hirr, both show power law dependence of the form H = m1(1 ? T/Tc)m2 in the temperature range of 0.75–0.96Tc. The values of parameter m2 increased from 1.44 to 1.95 for the samples up to 3% Zn content and decreased to 1.37 for higher Zn contents. The ratio Hirr/Hp was found to be 3–4 for the lower Zn content samples and was 7–8 for the sample with high Zn content indicating more disorder for higher Zn content samples. The region between peak field Hp and irreversibility field Hirr was broadened with the increase of Zn concentration. The strong effect of Zn substitution in modifying behavior of these samples even at elevated temperatures is possibly due to the changes in the anisotropy of our samples with the increase of Zn concentration and also due to the locally induced changes in magnetic moments by Zn substitution.  相似文献   

16.
《Current Applied Physics》2015,15(8):902-905
The planar Hall effect (PHE) in W/CoFeB/MgO structure with perpendicular magnetic anisotropy was investigated as a function of CoFeB thickness (tCoFeB). The PHE is measured by sweeping the in-plane magnetic field at various azimuthal angles as well as by rotating strong magnetic field which is enough to saturate the magnetization. We observed a huge PHE in the W/CoFeB/MgO sample, which is even larger than anomalous Hall effect (AHE). This is distinct from the results in Ta/CoFeB/MgO samples showing a much smaller PHE than AHE. Since the PHE is insensitive to the tCoFeB while the AHE is proportional to the tCoFeB, the unprecedented PHE can be attributed to the W layer with a large spin-orbit coupling.  相似文献   

17.
Low-field AC susceptibility measurements have been made, at different values of AC field amplitude Hm (26–600 A/m), on Eu:123 and Bi:2223 samples. Analysis of the temperature dependence of the AC susceptibility has been done employing Beans’ critical state model. The intergranular critical current density (Jc) is calculated as a function of both Hm and temperature for both samples, respectively. It is found that Jc increases with increasing Hm for both samples and its values are generally higher in Bi sample than in Eu sample. Our results are discussed in terms of zero-temperature pinning potential βI(0) in both systems.  相似文献   

18.
Polycrystalline single Co nanowires are prepared by electron beam lithography on GaAs substrates at room temperature. The width of the Co nanowires is varied between 150 and 4000 nm. Magnetoresistance measurements are carried out in a temperature range between 1.5 and 45 K applying magnetic fields μ0H up to 4.5 T parallel and perpendicular to the current direction. The in plane (longitudinal) magnetoresistance (MR) shows pronounced features at magnetic fields Hc (coercive fields) indicating the magnetization reversal process. From the MR-curves we determined Hc as a function of the angle α between current and field direction (from in plane to out of plane) and of the width w of the Co nanowires. The Hc=Hc(α,w) behavior allows to discuss the reversal process in more detail.  相似文献   

19.
YBa2Cu3O7?x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature (T) and magnetic field (H) ranges and by transmission electron microscopy (TEM). The critical current density Jc was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of Jc on c-axis pin spacing dc. At low T and H, Jc increased with decreasing dc, reaching the very high Jc  48 MA/cm2 ~20% of the depairing current density Jd at 10 K, self-field and dc  10 nm, but at higher T and H when TAD effects become significant, Jc was optimized at larger dc because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields Hirr(77 K) greater than 7 T and maximum bulk pinning forces Fp,max(77 K) greater than 7–8 GN/m3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes Jc at all T and H.  相似文献   

20.
Electrodeposited CoCu/Cu multilayers were investigated by measuring both anisotropic magnetoresistance (AMR) and planar Hall effect (PHE) simultaneously. Studies have been carried out on a [Co(3 nm)/Cu(4 nm)]50 multilayer sample, where a maximum of ?8.8 % GMR was observed at room temperature. A direct comparison of AMR and PHE output has been made both as a function of field and its relative orientation with respect to the current. Marked changes in PHE loops were observed at different angles (between magnetic field and applied current) whereas no noticeable changes could be found for AMR results. Such PHE outputs are the manifestations of complex spin reorganization due to strong antiferromagnetic-coupling between adjacent magnetic layers. In case of angular dependence output, when the applied field is less than the coercive field, the PHE output shows a deviation from the Sin2θ dependence that can be correlated to the domain wall propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号