首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Frequency dependent optical and dielectric properties for several grades of chemical vapor deposited (CVD) zinc sulfide (standard, elemental, and multi-spectral) was performed using a terahertz time-domain spectroscopy (THz-TDS) system in the frequency range from 0.15 THz to 2.5 THz. Zinc sulfide exhibits low frequency vibrational modes characterized by the THz-TDS. Two low-frequency phonon resonance lines were revealed at 0.78 THz and 2.20 THz. These samples were also characterized in the GHz range using a backward wave oscillator (BWO) source quasi-optical spectrometer, and the data obtained by both approaches were compared. Experimental data were also compared with an undamped harmonic oscillator model. These results compare well with the literature values obtained using other methods.  相似文献   

2.
We demonstrated experimentally a terahertz wave modulator based on optically controlled metamaterial. The signal modulation mechanism of the presented terahertz wave modulator was based on the resonance characteristic of metamaterial controlled without or with light excitation. A modulated semiconductor laser with 808 nm wavelength was employed to light the substrate. The interaction between the metamaterial and terahertz wave was strengthened and yielded an appreciable modulation of the terahertz output beam. The modulation speed is 0.1 Kb/s and the modulation depth of the proposed terahertz modulator is about 57% at a frequency of 0.32 THz.  相似文献   

3.
A single-polarization single-mode (SPSM) photonic crystal fiber with a rectangular array of micro-holes in the core region was designed in the terahertz frequency range near 1 THz. Based on the asymmetric arrangement of the micro-holes, birefringence between the fundamental x-polarized and y-polarized modes is introduced. A SPSM operation of the terahertz fiber can be supported due to the different mode indices of the x-polarized and y-polarized modes. The SPSM operation band is about 320 GHz with a central frequency of 1 THz. In addition, the proposed terahertz fiber also shows a good property of reduced propagation loss comparing with the dielectric absorption.  相似文献   

4.
The appearance of intense terahertz sources such as quantum cascade laser and free electron laser opens up new opportunities for 2D imaging. Though microbolometer and pyroelectric arrays are promising recorders, they are of small size and cannot be used when wide-field imaging in the longwave region is required. We applied for terahertz imaging 3″ × 3″ and 6″ × 6″ Macken Instruments Inc. “thermal image plates”, a set of thermal sensitive phosphor screens operating in a room temperature environment. The Novosibirsk free electron laser was used as a source of radiation. We have found that the response of thermal image plate is linear until the relative quenching is less than 60% of the initial luminescence intensity. The response curve follows the Seitz–Mott law. The threshold sensitivity was found to be 100 mW/cm2 at 1.5 THz and 40 mW/cm2 at 2.3 THz. Interferograms, holograms, and terahertz beam spatial distributions recorded in the spectral range of 1.2–2.5 THz are given as examples.  相似文献   

5.
We propose a design of a low loss terahertz polarization splitter based on a dual-core terahertz fiber with crossed dielectric strips in the fiber cross section. Low transmission loss is realized by extending the mode field to the air holes adjacent to the solid material. An 11.4-cm-long terahertz polarization splitter is obtained with the extinction ratio better than −15 dB and a bandwidth of 16 μm.  相似文献   

6.
A transient photocurrent model is used to explain terahertz emission from gas plasma irradiated by a laser pulse and the second harmonic. By introducing the second harmonic, 400 nm, the corresponding terahertz emission is greatly enhanced. The exact dependence of terahertz emission on the intensity ratio of 400–800 nm is studied for the case with total intensity of 5.00 × 1014 W/cm2. Results show the emission reaches the maximum at about the case for energy distribution of Iω = 4.00 × 1014 W/cm2, I2ω = 1.00 × 1014 W/cm2.  相似文献   

7.
We present a cascaded continuous-wave singly resonant optical parametric oscillator (SRO) delivering idler output in mid-IR and terahertz frequency range. The SRO was pumped by an ytterbium-doped fiber laser with 27 W linear polarization pump powers, and based on periodically poled MgO:LiNbO3 crystal (PPMgLN) in two-mirror linear cavity. The PPMgLN is 50 mm long with 29.5 μm period. The idler power output at 3811 nm was obtained 2.6 W. The additional spectral components that have been attributed to cascaded optical parametric processes are described at increasing pump levels. Besides the initial signal component at about 1476.8 nm, further generated wavelengths with frequency shifts about 47 cm?1, 94 cm?1 and 104 cm?1 were observed. It was speculated that the idler waves lie in the terahertz (THz) domain from the observed results.  相似文献   

8.
Identifying Radix Curcumae by using terahertz spectroscopy   总被引:1,自引:0,他引:1  
The absorption spectra from 0.2 THz to 1.6 THz of four kinds of similar Chinese herbs, including huangyujin, lvyujin, guiyujin and wenyujin, have been investigated by terahertz time-domain spectroscopy (THz-TDS). Furthermore, by using support vector machines (SVM) method, the linear kernel function, the polynomial kernel function, and the radial basis kernal function are employed for separating four kinds of Radix Curcumae. The calculated results show that the accuracy of discrimination for these four kinds of Chinese herbs is 100%.  相似文献   

9.
The absorption spectrum of methyl cyanide (CH3CN) has been measured in the near IR between 6000 and 8000 cm?1 with a resolution of 0.12 cm?1 using Fourier transform incoherent broadband cavity-enhanced absorption spectroscopy. The spectrum contains several weakly perturbed spectral regions; potential vibrational combination bands contributing to the spectrum are outlined. Line positions and cross-sections of CH3CN between 6814 and 7067 cm?1 have been measured at high-resolution of 0.001 cm?1 using diode laser based off-axis cavity-enhanced absorption spectroscopy. A total of 4630 new absorption lines of CH3CN are identified in this region. A value for the self-broadening coefficient has determined to be (3.3±0.2)×10?3 cm?1 mbar?1 for one isolated line at 7034.171 cm?1. Several line series have been identified in these regions and an autocorrelation analysis performed with a view to aiding future assignments of the rotational-vibrational transitions.  相似文献   

10.
Optically transparent nonlinear optical bulk single crystal of N-(3-nitrophenyl) acetamide (3NAA) of dimension 7 mm × 6 mm × 5 mm has been grown from its aqueous solution by slow solvent evaporation technique. The grown crystal was characterized by powder X-ray diffraction to confirm the crystal structure. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier Transform Infrared Spectroscopy and FT-NMR technique. Thermal behaviour of the grown crystals was studied by thermogravimetric analysis. The second harmonic generation efficiency of 3NAA was determined by Kurtz and Perry powder technique. The optical absorption study confirms the suitability of the crystal for device applications. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. Dielectric, microhardness and photoconductivity studies also carried out for the grown sample.  相似文献   

11.
We present vibrational dynamics and thermodynamics for the (1 0 0) surfaces of Cu, Ag, Pd, Pt and Au using a real space approach. The force field for these systems is described by density functional theory. The changes in the vibrational dynamics and thermodynamics from those in bulk are confined mostly to the first-layer. A substantial enhancement of the low-frequency end of the acoustic branch was found and is related to a loosening of the bond at the surface. The thermodynamics of the first-layer also show significant differences (higher heat capacity, lower free energy and higher mean vibrational square amplitudes) from what obtains in bulk. Comparing these results with those calculated using embedded-atom method potentials, we discovered that for Ag(1 0 0) and Cu(1 0 0), the two methods yield very similar results while for Pd(1 0 0), Pt(1 0 0) and Au(1 0 0) there are substantial differences.  相似文献   

12.
We theoretically investigate the modulation efficiency, response time, and pump power of a terahertz-beam intensity modulator by using an organic photonic crystal slab structure with high quality factor “defect” cavity. The basic operation of an ultrafast low-power terahertz wave modulator actuated by the dynamical shifts of the defect mode induced by pump intensity is discussed in detail. The finite-difference time-domain method is used to verify and analyze the characteristics of the terahertz wave modulator. The device exhibited extinction ratio of 47.15 dB and insertion loss of 3.2 dB at frequency of 1.062 THz with ultrafast response times on the order of several picoseconds.  相似文献   

13.
We have studied the dissociation of H2 on the ZrB2(0001) surface using density functional theory and reflection absorption infrared spectroscopy (RAIRS). Our results show that H2 readily dissociates on the Zr-terminated (0001) surface up to a H coverage of 1/2 ML. Furthermore, we show that H is very mobile on the surface and that it desorbs between 545 and 625 K. The calculated vibrational frequencies for the adsorbed H are in excellent agreement with our RAIRS measurements and with previously reported high resolution electron energy loss spectra.  相似文献   

14.
The absorption spectrum of water vapor has been investigated by intracavity laser spectroscopy (ICLAS) in the 12 746–13 558 cm?1 spectral region corresponding to an interesting transparency window of the atmosphere, partly obscured by the A band of molecular oxygen.The achieved sensitivity—in the order of αmin~10?9 cm?1—has allowed one to measure 1062 water lines with intensities ranging from 1.6×10?28 to 2.35×10?24 cm/molecule at 296 K. A total of 169 new and improved energy levels belonging to 21 vibrational states could be determined from 374 newly measured transitions. The retrieved experimental line list is compared with the spectra calculated by Schwenke and Partridge, and Barber and Tennyson. Comparison with the available experimental databases shows that the obtained results represent a significant improvement of the knowledge of the water absorption in the considered region, in particular in the region of the oxygen A band.  相似文献   

15.
We have measured decay spectra following the N 1s→π* transition in N2 with vibrational resolution in both the intermediate and final states. Using photon energy steps of 60 meV subtle changes in both the participator and spectator lines were observed. In particular, spectra measured at photon energies on the low-energy side of the first vibrational component of the absorption curve (“detuning”) gave rise to vibrational collapse of the participator lines. At higher photon energies vibrational-lifetime interference is observed on both participator and spectator lines.  相似文献   

16.
Using density functional theory (DFT) we report results for the electronic structure and vibrational dynamics of hydrogenated silicon carbide (001) (3 × 2) surfaces with various levels of hydrogenation. These results were obtained using density functional theory with a generalized gradient exchange correlation function. The calculations reveal that metallization can be achieved via hydrogen atoms occupying the second silicon layer. Further increase of hydrogen occupation on the second silicon layer sites results in a loss of this metallization. For the former scenario, where metallization occurs, we found a new vibrational mode at 1870 cm? 1, which is distinct from the mode associated with hydrogen atoms on the first layer. Furthermore, we found the diffusion barrier for a hydrogen atom to move from the second to the third silicon layer to be 258 meV.  相似文献   

17.
The first high-resolution absorption spectrum of the 5ν3 band of the 14N16O2 molecule at 7766.071 cm?1 was recorded by high sensitivity CW-Cavity Ring Down Spectroscopy between 7674 and 7795 cm?1. The noise equivalent absorption of the recordings was αmin≈1×10?10 cm?1. The assignments involve energy levels of the (0,0,5) vibrational state with rotational quantum numbers up to Ka=9 and N=47. The set of the spin–rotation energy levels were reproduced within their experimental uncertainty using a theoretical model, which takes explicitly into account the Coriolis interactions between the spin rotational levels of the (0,0,5) vibrational state and those of the (0,2,4) dark state together with the electron spin–rotation resonances within the (0,0,5) and (0,2,4) states. Precise values were determined for the (0,0,5) vibrational energy rotational, spin-rotational constants and for the (0,2,4)?(0,0,5) coupling constants. In addition the (0,2,4) rotational and spin-rotational constants were estimated. Using these parameters and the value of the transition dipole moment operator determined from a fit of a selection of experimental line intensities, the synthetic spectrum of the 5ν3 band was generated and is provided as Supplementary material.  相似文献   

18.
We have investigated the adsorption of molecular (gaseous) SiO2 on a clean Si(1 0 0) p(2 × 2) reconstructed surface using density functional theory based methods. The SiO2 molecule is found to be chemisorbed on various sites on the Si surface and the most energetically favourable structure is on top of the dimers. The minimum energy pathways for the various adsorption channels indicate that the reaction is barrierless in all cases. The corresponding vibrational spectrum is also calculated and the adsorbed molecules are, as expected, found to have red-shifted vibrational frequencies. The energetically favourable adsorption sites and adsorption energies are comparable to the results found for SiO.  相似文献   

19.
A scheme to determine the complex refractivity of gold (Au), Copper (Cu) and Aluminum (Al) from measurements of ellipsometer and spectrometer are proposed in this paper. The reflection spectra of the metals from 4 THz to 40 THz are measured with spectrometer. The determined refractivity by Kramers-Kronig (KK) algorithm coincides with the measured results from ellipsometer in far infrared region. Drude model is invited to make the wing correction on the terahertz reflection spectra, which helps to eliminate the effects of the noises from spectrometer on KK algorithm. The calculated refractive indexes from measured spectra in terahertz region are in consistent with those from corrected reflection spectra. The advantage of the scheme is to obtain terahertz dispersion properties based on limited information in infrared region.  相似文献   

20.
In our effort to systematically study the far infrared (FIR) spectra of asymmetrically mono deuterated methanol (CH2DOH) and thereby obtain the transition wavenumbers with better and better accuracy (Mukhopadhyay, 2016a,b), the complete Fourier transform (FT) spectra from FIR to infrared (IR) vibrational bands (in the range 50–1190 cm−1) have been re-recorded using the Synchrotron Radiation Source at the Canadian Light Sources in Saskatchewan, Canada. The resolution of the spectrum is unprecedented, reaching beyond the Doppler limited resolution as low as about 0.0008 cm−1 with a signal to noise (S/N) ratio is many fold better than that can be obtained by commercially available FT spectrometer using thermal sources (e.g., Globar). Spectra were also recorded beyond 1190 cm−1 to about 5000 cm−1 at a somewhat lower resolution of 0.002–0.004 cm−1. In this report the analysis of the b-type and c-type torsional - rotational spectra in the ground vibrational state corresponding to gauche- (e1/o1) to gauche- (e1/o1) and gauche- (e1/o1) to trans- (e0) states in the ground vibrational state are reported and an atlas of the wavenumber for about 2500 FIR assigned absorption lines has been prepared. The transitions within a given sub-band are analyzed using state dependent expansion parameters and the Q-branch origins. The data from previous results (Mukhopadhyay, 2016a,b) along with the present work allowed a global analysis yielding a complete set of molecular parameters. The state dependent molecular parameters reproduce the experimental wavenumbers within experimental uncertainty. In addition, the sensitivity of the spectrum allowed observation of forbidden transitions previously unobserved and helped reassignment of rotational angular momentum quantum numbers of some ΔK = ±1, Q-branch transitions in highly excited states recently reported in the literature. To our knowledge the wavenumbers reported in the present work are the most accurate so far reported in the literature and represent the highest resolution spectra for this molecular species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号