首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The article reports the structural and optical properties of vacuum‐evaporated cadmium sulfide (CdS) films with different thicknesses at room temperature. The structural investigations performed by means of X‐ray diffraction (XRD) technique have showed that all the films have the zinc‐blende structure, a face‐centered cubic form with lattice constants a = b = c = 5.82 Å and point group F4 3m. Crystallite sizes calculated from Scherrer relation are in the range of 173–345 Å. So far, because the optical parameters of the metastable cubic CdS have not been so well known, we apply spectroscopic ellipsometry to determine the thickness, optical constants and energy band gap of CdS thin film deposited by thermal evaporation onto opaque gold substrate, a perfect reflectivity and inert metal. As shown the measured spectral behavior of the optical constants and the band gap value of CdS thin film are in agreement with those obtained by the reflectance and transmittance methods. The energy band gap of CdS thin film determined from the spectral behavior of the absorption coefficient is about 2.46 eV. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A simple method of microwave assisted chemical bath deposition (MA-CBD) was adopted to fabricate cadmium sulfide (CdS) thin films. The superhydrophobic surface with a water contact angle (CA) of 151 degrees was obtained. Via a scanning electron microscopy (SEM) observation, the film was proved having a porous micro/nano-binary structure which can change the property of the surface and highly enhance the hydrophobicity of the film. A possible mechanism was suggested to describe the growth of the porous structure, in which the microwave heating takes an important role in the formation of two distinct characteristic dimensions of CdS precipitates, the growth of CdS sheets in micro-scale and sphere particles in nano-scale. The superhydrophobic films may provide novel platforms for photovoltaic, sensor, microfluidic and other device applications.  相似文献   

3.
Polycrystalline β-zinc sulfide thin films were prepared by solution pyrolysis of an ethylzinc isopropylthiolate–zinc bis(dibutyldithiocarbamate) combined precursor (EtZnSiPr–Zn(S2CNnBu2)2) in chloroform solution on glass or silicon(111) substrates at 300°C. Homogeneous but amorphous indium sulfide thin films were obtained from butylindium bis(isopropylthiolate) (nBuInSiPr2) in P-xylene on these substrates at 300°C similarly. The sulfide thin films obtained were characterized by means of X-ray photoelectron spectroscopy (XPS), X-ray fluorescence Microanalysis, scanning electron microscopy (SEM) and optical band gap measurements.  相似文献   

4.
Highly crystallized barium tungstate (BaWO4) thin films with dumbbell-like, kernel-like, bowknot-like and cauliflower-like microstructure were synthesized from an aqueous solution containing barium nitrate, ethylenediamine tetraacetate acid disodium and sodium tungstate, via mild microwave assisted chemical bath deposition process. The resulting BaWO4 films with different morphologies were characterized by X-ray diffraction spectrum, scanning electron microscope, Raman and photoluminescence spectra. The results indicate that the morphologies of final products significantly depend on the reaction conditions including the reaction time, the initial concentration of precursor reagent and the physicochemical characteristics of the substrates. Furthermore, the oriented aggregation mechanism is proposed as a possible formation mechanism of the films with specific morphologies.  相似文献   

5.
Aluminum doped zinc oxide (AZO) thin films for electrode applications were deposited on glass substrates using chemical bath deposition (CBD) method. The influence of deposition time on the structural, morphological, and opto-electrical properties of AZO films were investigated. Structural studies confirmed that all the deposited films were hexagonal wurtzite structure with polycrystalline nature and exhibited (002) preferential orientation. There is no other impurity phases were detected for different deposition time. Surface morphological images shows the spherically shaped grains are uniformly arranged on to the entire film surface. The EDS spectrum confirms the presence of Zn, O and Al elements in deposited AZO film. The observed optical transmittance is high (87%) in the visible region, and the calculated band gap value is 3.27 eV. In this study, the transmittance value is decreased with increasing deposition time. The room temperature PL spectrum exposed that AZO thin film deposited at (60 min) has good optical quality with less defect density. The minimum electrical resistivity and maximum carrier concentration values were observed as 8.53 × 10−3(Ω cm) and 3.53 × 1018 cm−3 for 60 min deposited film, respectively. The obtained figure of merit (ϕ) value 3.05 × 10−3(Ω/sq)- 1 is suggested for an optoelectronic device.  相似文献   

6.
Copper‐doped iron sulfide (CuxFe1?xS, x = 0.010–0.180) thin films were deposited using a single‐source precursor, Cu(LH)2Cl2 (LH = monoacetylferrocene thiosemicarbazone), by aerosol‐assisted chemical vapor deposition technique. The Cu‐doped FeS thin films were deposited at different substrate temperatures, i.e. 250, 300, 350, 400 and 450 °C. The deposited thin films were characterized by X‐ray diffraction (XRD) patterns, Raman spectra, scanning electron microscopy, energy dispersive X‐ray analysis (EDX) and atomic force microscopy. XRD studies of Cu‐doped FeS thin films at all the temperatures revealed formation of single‐phase FeS structure. With increasing substrate temperature from 250 to 450 °C, there was change in morphology from wafer‐like to cylindrical plate‐like. EDX analysis showed that the doping percentage of copper increased as the substrate temperature increased from 250 to 450 °C. Raman data supports the doping of copper in FeS films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Cadmium selenide quantum dots with cubic crystal structure are chemically deposited in thin film form using selenosulfate as a precursor for selenide ions and ammonia buffer with double role: as a ligand and as a pH value controller. The optical band gap energies of as-deposited and thermally treated cadmium selenide thin films, calculated within the framework of parabolic approximation for the dispersion relation, on the basis of equations which arise from the Fermi's golden rule for electronic transitions from valence to conduction band, are 2.08 and 1.77 eV, correspondingly. The blue shift of band gap energy of 0.34 eV for as-deposited thin films with respect to the bulk value is due to the quantum size effects (i.e., nanocrystals behave as quantum dots) and this finding is in agreement with the theoretical predictions. During the thermal treatment the nanocrystals are sintered, the increase of crystal size being in correlation with the decrease of band gap energy. The annealed thin films are practically non-quantized. From the resistance-temperature measurements, on the basis of the dependence of ln(R/Ω) vs 1/T in the region of intrinsic conduction, the thermal band gap energy (at 0 K) of 1.85 eV was calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号