首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 533 毫秒
1.
ObjectivePurpose of the study is to verify the Gamma Knife Extend™ system (ES) based fractionated stereotactic radiosurgery with newly developed head-thorax phantom.MethodsPhantoms are extensively used to measure radiation dose and verify treatment plan in radiotherapy. A human upper body shaped phantom with thorax was designed to simulate fractionated stereotactic radiosurgery using Extend™ system of Gamma Knife. The central component of the phantom aids in performing radiological precision test, dosimetric evaluation and treatment verification. A hollow right circular cylindrical space of diameter 7.0 cm was created at the centre of this component to place various dosimetric devices using suitable adaptors. The phantom is made of poly methyl methacrylate (PMMA), a transparent thermoplastic material. Two sets of disk assemblies were designed to place dosimetric films in (1) horizontal (xy) and (2) vertical (xz) planes. Specific cylindrical adaptors were designed to place thimble ionization chamber inside phantom for point dose recording along xz axis. EBT3 Gafchromic films were used to analyze and map radiation field. The focal precision test was performed using 4 mm collimator shot in phantom to check radiological accuracy of treatment. The phantom head position within the Extend™ frame was estimated using encoded aperture measurement of repositioning check tool (RCT). For treatment verification, the phantom with inserts for film and ion chamber was scanned in reference treatment position using X-ray computed tomography (CT) machine and acquired stereotactic images were transferred into Leksell Gammaplan (LGP). A patient treatment plan with hypo-fractionated regimen was delivered and identical fractions were compared using EBT3 films and in-house MATLAB codes.ResultsRCT measurement showed an overall positional accuracy of 0.265 mm (range 0.223 mm–0.343 mm). Gamma index analysis across fractions exhibited close agreement between LGP and film measured dose with ≥90% (max 93%) pixel pass rate at 1 mm of spatial and 1% of dosimetric tolerances. The focal precision test showed the variation of 0.465 mm between radiological and planned iso-centre.ConclusionsThe study demonstrated the suitability of newly developed head-thorax phantom for dosimetric verification of fractionated stereotactic radiosurgery using Extend™ system of Gamma Knife.  相似文献   

2.
The increasing complexity and high amount of dose per fraction delivered in prostate high dose rate (HDR) brachytherapy treatments call for the implementation of accurate and effective methods for the systematic and independent quality control of the overall treatment procedure. In this study, MOSkin detectors were placed on a trans-rectal ultrasound (TRUS) probe with the aim of performing both imaging and real time rectal wall in vivo dosimetry with the use of just one single instrument. After an adequate calibration of the detectors, which was carried out in a solid water phantom, the use of MOSkins integrated to the TRUS probe was studied in a gel phantom with a typical (simplified) prostate implant. Measured and calculated doses from the treatment planning system were compared, with a resulting very low average discrepancy of −0.6 ± 2.6%. The results are very promising and of particular clinical importance, however, further in vivo investigation is planned to validate the proposed method.  相似文献   

3.
A widely tunable optical clock pulse train generation and transmission experiments with the generated pulse train are demonstrated. The clock pulse train is generated by means of all-optical wavelength conversion using seed clock signal, probe signal, and single semiconductor optical amplifier (SOA) with the gain peak wavelength at short side. By adjusting the injected signal powers into the converter, the generated clock pulse train at the bit-rate of 10 Gb/s has high optical signal-to-noise ratio (OSNR) and low excess timing-jitter in a wide operating wavelength range. We also demonstrate 20-km transmission experiment using the generated signal in the range of 1460–1610 nm. In this experiment, we achieve transmission performances comparable to that of 1550 nm seed clock signal.  相似文献   

4.
The contact potential between a single ZnO nanowire and Ti/Au contacts was estimated to be ∼30 meV by considering the Arrhenious plot of the two-probe resistance, the thermionic emission conduction, and the Fowler–Nordheim tunneling model. The net voltages applied to the contacts were calculated by subtracting the four-probe voltages from the two-probe voltages at the same currents. The activation energy of the four-probe resistance was about 2.4 mV which was 1/11th of that of the two-probe resistance. The Fowler–Nordheim plot clearly showed the crossover of the conduction mechanism from thermionic emission to tunneling regime as lowering the temperatures below T<100 K.  相似文献   

5.
The purpose of this study is to investigate the potential use of a beryllium oxide (BeO) ceramic as a radioluminescence (RL) and optically stimulated luminescence (OSL) probe material for fibre-coupled luminescence dosimetry. A portable dosimetry system, named RL/OSL BeO FOD was developed, consisting of a 1 mm diameter, 1 mm long BeO ceramic cylinder coupled to a silica/silica optical fibre. The reader measures the RL signal and also uses a 450 nm laser diode to stimulate the BeO ceramic. A second background optical fibre is used to remove the stem effect. The RL/OSL BeO FOD was characterised in a solid water phantom, using a 6 MV x-ray beam. The RL was found to be reproducible and have a linear response to doses ranging from 30 cGy–15 Gy and dose rates from 100 cGy/min – 600 cGy/min. The OSL response was linear to doses of 10 Gy, becoming supralinear at higher doses. Measured percentage depth curves using the RL/OSL BeO FOD agreed with those measured using an IC15 ion chamber to within 5%, beyond the build up region. It was also found that the RL from BeO ceramic is unaffected by the delivered dose to the probe and hence, it remains constant for a given dose-rate. The insensitivity of the RL to accumulated dose makes BeO ceramic potentially capable of accurate dose-rate measurements without any corrections for the accumulated dose. This study demonstrates the feasibility of BeO ceramic as a versatile fibre-coupled luminescence dosimeter probe.  相似文献   

6.
We propose a workflow for validating parallel transmission (pTx) radio-frequency (RF) magnetic field heating patterns using Proton-Resonance Frequency shift (PRF)-based MR thermometry. Electromagnetic (EM) and thermal simulations of a 7 T 8-channel dipole coil were done using commercially available software (Sim4Life) to assess RF heating. The fabrication method for a phantom with electrical properties matched to human tissue is also described, along with methods for its electrical and thermal characterisation. Energy was deposited to specific transmit channels, whilst acquiring 3D PRF data using a pair of interleaved RF shim transmit modes. A multi-echo readout and pre-scan stabilisation protocol were used for increased sensitivity and to correct for measurement-to-measurement instabilities. The electrical properties of the phantom were found to be within 10% of the intended values. Adoption of a 14-min stabilisation scan gave sufficient suppression of any evolving background spatial variation in the B0 field to achieve <0.001 °C/mm thermometry drift over 10 min of subsequent scanning. Using two RF shim transmit modes enabled full phantom coverage and combining multiple echo times enabled a 13–54% improvement in the RMSE sensitivity to temperature changes. Combining multiple echoes reduced the peak RMSE by 45% and visually reduced measurement-to-measurement instabilities. A reference fibre optic probe showed temperature deviations from the PRF-estimated temperature to be smaller than 0.5 °C. Given the importance of RF safety in pTx applications, this workflow enables accurate validation of RF heating simulations with minimal additional hardware requirements.  相似文献   

7.
Ding M  Wei Z  Gardi L  Downey DB  Fenster A 《Ultrasonics》2006,44(Z1):e331-e336
In order to guide the needle to the correct location in 3D US-guided brachytherapy, the needle is continuously tracked as it is being inserted. A pre-scan before the needle insertion and a post-scan after the needle insertion are subtracted to obtain a difference image containing the needle. The image is projected along two orthogonal directions approximately perpendicular to the needle, and the 3D needle is reconstructed from the segmented needles in the two projected images. The seeds implanted with the needle are located in the cropped volume along the needle. Thus, the seeds are segmented using a tri-bar model and 3D line segment patterns. Finally, the positions of the seeds are determined using a peak detection technique. Experiments with agar and turkey/chicken phantoms as well as patient data demonstrated that our needle segmentation technique could segment the needle in near real-time with an accuracy of 0.6 mm in position and 1.0 degrees in orientation. The true-positive rate for seed segmentation is 100% for the agar phantom and 93% for the chicken phantom. The average distance to manual seed segmentation was 1.0mm for the agar phantom and 1.7 mm for the chicken phantom.  相似文献   

8.
Multiple sclerosis (MS) causes demyelinating lesions in the white matter and increased iron deposition in the subcortical gray matter. Myelin protons have an extremely short T2* (< 1 ms) and are not directly detected with conventional clinical magnetic resonance (MR) imaging sequences. Iron deposition also reduces T2*, leading to reduced signal on clinical sequences. In this study we tested the hypothesis that the inversion recovery ultrashort echo time (IR-UTE) pulse sequence can directly and simultaneously image myelin and iron deposition using a clinical 3 T scanner. The technique was first validated on a synthetic myelin phantom (myelin powder in D2O) and a Feridex iron phantom. This was followed by studies of cadaveric MS specimens, healthy volunteers and MS patients. UTE imaging of the synthetic myelin phantom showed an excellent bi-component signal decay with two populations of protons, one with a T2* of 1.2 ms (residual water protons) and the other with a T2* of 290 μs (myelin protons). IR-UTE imaging shows sensitivity to a wide range of iron concentrations from 0.5 to ~ 30 mM. The IR-UTE signal from white matter of the brain of healthy volunteers shows a rapid signal decay with a short T2* of ~ 300 μs, consistent with the T2* values of myelin protons in the synthetic myelin phantom. IR-UTE imaging in MS brain specimens and patients showed multiple white matter lesions as well as areas of high signal in subcortical gray matter. This in specimens corresponded in position to Perl's diaminobenzide staining results, consistent with increased iron deposition. IR-UTE imaging simultaneously detects lesions with myelin loss in the white matter and iron deposition in the gray matter.  相似文献   

9.
PurposeSpatial position accuracy in magnetic resonance imaging (MRI) is an important concern for a variety of applications, including radiation therapy planning, surgical planning, and longitudinal studies of morphologic changes to study neurodegenerative diseases. Spatial accuracy is strongly influenced by gradient linearity. This work presents a method for characterizing the gradient non-linearity fields on a per-system basis, and using this information to provide improved and higher-order (9th vs. 5th) spherical harmonic coefficients for better spatial accuracy in MRI.MethodsA large fiducial phantom containing 5229 water-filled spheres in a grid pattern is scanned with the MR system, and the positions all the fiducials are measured and compared to the corresponding ground truth fiducial positions as reported from a computed tomography (CT) scan of the object. Systematic errors from off-resonance (i.e., B0) effects are minimized with the use of increased receiver bandwidth (± 125 kHz) and two acquisitions with reversed readout gradient polarity. The spherical harmonic coefficients are estimated using an iterative process, and can be subsequently used to correct for gradient non-linearity. Test-retest stability was assessed with five repeated measurements on a single scanner, and cross-scanner variation on four different, identically-configured 3 T wide-bore systems.ResultsA decrease in the root-mean-square error (RMSE) over a 50 cm diameter spherical volume from 1.80 mm to 0.77 mm is reported here in the case of replacing the vendor's standard 5th order spherical harmonic coefficients with custom fitted 9th order coefficients, and from 1.5 mm to 1 mm by extending custom fitted 5th order correction to the 9th order. Minimum RMSE varied between scanners, but was stable with repeated measurements in the same scanner.ConclusionsThe results suggest that the proposed methods may be used on a per-system basis to more accurately calibrate MR gradient non-linearity coefficients when compared to vendor standard corrections.  相似文献   

10.
The use of a 20-kHz probe-type sonicator irradiating downward in a 500 mL vessel was optimized for the enhancement of the sonochemical activity in terms of the geometric and operational factors. These factors included the probe immersion depth (the vertical position of the probe), input power, height of the liquid from the bottom, horizontal position of the probe, and thickness of bottom plate The sonochemical oxidation reactions were investigated both quantitatively and qualitatively using calorimetry, KI dosimetry, and luminol (Sonochemiluminescence, SCL) techniques. The sonochemical activity was very positively affected by the vertical boundaries. The highest sonochemical activity was obtained when the probe was placed close to the bottom of the vessel (immersion depth of 60 mm), with a high input power (input power of 75%), and optimal liquid height condition (liquid height of 70 mm). The SCL image analysis showed that the cavitational activity zone gradually expanded around the probe body and changed into a circular shape as the experimental conditions were optimized, and consequently the sonochemical activity increased. The formation of a large bright circular-shaped activity zone could be attributed to the strong reflections of the ultrasound firstly, at the vessel bottom and secondly, at the liquid surface. On the other hand, the cavitational activity zone and the sonochemical activity were negatively affected by the horizontal boundaries when the probe was placed close to the side wall of the vessel. In addition, it was found that the sonochemical activity was also significantly affected by the thickness of the support plate owing to the reflection and transmission of the ultrasound at the boundary between the liquid and the solid media.  相似文献   

11.
An infrared based positioning and tracking (IPT) system was introduced and its accuracy and efficiency for patient setup and monitoring were tested for daily radiotherapy treatment. The IPT system consists of a pair of floor mounted infrared stereoscopic cameras, passive infrared markers and tools used for acquiring localization information as well as a custom controlled software which can perform the positioning and tracking functions. The evaluation of IPT system characteristics was conducted based on the AAPM 147 task report. Experiments on spatial drift and reproducibility as well as static and dynamic localization accuracy were carried out to test the efficiency of the IPT system. Measurements of known translational (up to 55.0 mm) set-up errors in three dimensions have been performed on a calibration phantom. The accuracy of positioning was evaluated on an anthropomorphic phantom with five markers attached to the surface; the precision of the tracking ability was investigated through a sinusoidal motion platform. For the monitoring of the respiration, three volunteers contributed to the breathing testing in real time. The spatial drift of the IPT system was 0.65 mm within 60 min to be stable. The reproducibility of position variations were between 0.01 and 0.04 mm. The standard deviation of static marker localization was 0.26 mm. The repositioning accuracy was 0.19 mm, 0.29 mm, and 0.53 mm in the left/right (L/R), superior/inferior (S/I) and anterior/posterior (A/P) directions, respectively. The measured dynamic accuracy was 0.57 mm and discrepancies measured for the respiratory motion tracking was better than 1 mm. The overall positioning accuracy of the IPT system was within 2 mm. In conclusion, the IPT system is an accurate and effective tool for assisting patient positioning in the treatment room. The characteristics of the IPT system can successfully meet the needs for real time external marker tracking and patient positioning as well as respiration monitoring during image guided radiotherapy treatments.  相似文献   

12.
Our objective is to evaluate an ultrasound probe for measurements of velocity and anisotropy in human cortical bone (tibia). The anisotropy of cortical bone is a known and mechanically relevant property in the context of osteoporotic fracture risk. Current in vivo quantitative ultrasound devices measuring the velocity of ultrasound in long bones can only be applied in the axial direction. For anisotropy measurements a second direction for velocity measurements preferably perpendicular to the axial direction is necessary. We developed a new ultrasound probe which permits axial transmission measurements with a simultaneous second perpendicular direction (tangential). Anisotropy measurements were performed on isotropic and anisotropic phantoms and two excised human female tibiae (age 63 and 82). Anisotropy ratios (AI; ratio of squared ultrasound velocities in the two directions) were for the isotropic phantom 1.06 ± 0.01 and for the anisotropic phantom 1.14 ± 0.03 (mean ± standard deviation). AI was 1.83 ± 0.29 in the tibia from the older donor and 1.37 ± 0.18 in the tibia from the younger donor. The AIs were in the expected range and differed significantly (p < 0.05, t-test) between the tibiae. Measured sound velocities were reproducible (mean standard deviation of short time precision of both channels for phantom measurements 31 m/s) and in agreement with reported velocities of the phantom material. Our results document the feasibility of anisotropy measurements at long bones using a single probe. Further improvements in the design of the probe and tests in vivo are warranted. If this approach can be evaluated in vivo an additional tool for assessing the bone status is available for clinical use.  相似文献   

13.
Measurement-based Monte Carlo (MBMC) simulation using a high definition (HD) phantom was used to evaluate the dose distribution in nasopharyngeal cancer (NPC) patients treated with intensity modulated radiation therapy (IMRT). Around nasopharyngeal cavity, there exists many small volume organs-at-risk (OARs) such as the optic nerves, auditory nerves, cochlea, and semicircular canal which necessitate the use of a high definition phantom for accurate and correct dose evaluation. The aim of this research was to study the advantages of using an HD phantom for MBMC simulation in NPC patients treated with IMRT. The MBMC simulation in this study was based on the IMRT treatment plan of three NPC patients generated by the anisotropic analytical algorithm (AAA) of the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA, USA) using a calculation grid of 2 mm2. The NPC tumor was treated to a cumulative dose of 7000 cGy in 35 fractions using the shrinking-field sequential IMRT (SIMRT) method. The BEAMnrc MC Code was used to simulate a Varian EX21 linear accelerator treatment head. The HD phantom contained 0.5 × 0.5 × 1 mm3 voxels for the nasopharyngeal area and 0.5 × 0.5 × 3 mm3 for the rest of the head area. An efficiency map was obtained for the amorphous silicon aS1000 electronic portal imaging device (EPID) to adjust the weighting of each particle in the phase-space file for each IMRT beam. Our analysis revealed that small volume organs such as the eighth cranial nerve, semicircular canal, cochlea and external auditory canal showed an absolute dose difference of ≥200 cGy, while the dose difference for larger organs such as the parotid glands and tumor was negligible for the MBMC simulation using the HD phantom. The HD phantom was found to be suitable for Monte Carlo dose volume analysis of small volume organs.  相似文献   

14.
There are few effective methods to detect or prevent the extravasation of injected materials such as chemotherapeutic agents and radiographic contrast materials. To investigate whether a thermographic camera could visualize the superficial vein and extravasation using the temperature gradient produced by the injected materials, an infrared thermographic camera with a high resolution of 0.04 °C was used. At the room temperature of 26 °C, thermal images and the time course of the temperature changes of a paraffin phantom embedded with rubber tubes (diameter 3.2 mm, wall thickness 0.8 mm) were evaluated after the tubes were filled with water at 15 °C or 25 °C. The rubber tubes were embedded at depths of 0 mm, 1.5 mm, and 3.0 mm from the surface of the phantom. Temperature changes were visualized in the areas of the phantom where the tubes were embedded. In general, changes were more clearly detected when greater temperature differences between the phantom and the water and shallower tube locations were employed. The temperature changes of the surface of a volunteer’s arm were also examined after a bolus injection of physiological saline into the dorsal hand vein or the subcutaneous space. The injection of 5 ml room-temperature (26 °C) saline into the dorsal hand vein enabled the visualization of the vein. When 3 ml of room-temperature saline was injected through the vein into the subcutaneous space, extravasation was detected without any visualization of the vein. The subtraction image before and after the injection clearly showed the temperature changes induced by the saline. Thermography may thus be useful as a monitoring system to detect extravasation of the injected materials.  相似文献   

15.
<0 0 1> directed good quality potassium dihydrogen phosphate (KDP) single crystal has been grown by Sankaranarayanan–Ramasamy (SR) method with the vision to improve the crystalline perfection and efficiency. A seed crystal of diameter 25 × 15 × 3 mm3 was mounted in the ampoule, where the diameter of the ampoule was much bigger than the seed. The size of the crystal grown was 30 × 20 × 60 mm3. The obtained transparency for the crystal grown by SR method is 93% and by conventional method is 85% in the entire visible region. The HRXRD analysis indicates that the crystalline perfections of the crystals are excellent without having any very internal structural grain boundaries. The obtained FWHM for conventional method grown crystal is 12 arc s and for SR method is 6 arc s. Low dielectric loss indicates that the <0 0 1> directed crystal contains minimum defects. Higher mechanical stability was observed in SR method grown KDP compared to the other. Laser damage threshold value has been determined using Nd:YAG laser operating at 1064 nm. The optical transmission study and the powder SHG measurement show the suitability of the ingot for nonlinear optical applications.  相似文献   

16.
The fundamental measurement theory of an electrostatic probe and cross-correlation velocity measurement method are introduced in this paper. The effects of the probe's geometric parameters, including the length of the probe; the thickness, length and relative permittivity of the dielectric pipe; the radius of the screen on the dimensionless calibration coefficient (k), and the statistical error of the transit time (τm) of the correlation velocity measurement system using electrostatic probes were investigated theoretically. Finally the measurement system was applied in a 10 mm bore horizontal section of a dense-phase pneumatic conveying system under high pressure circulating pulverized coal over a superficial air velocity range of 0.5–7 m/s for a particle concentration 0.052–0.141 m3/m3. The experimental results that were obtained demonstrate that the system is capable of providing solid particle velocity measurements with repeatability better than 10% under the given experimental conditions.  相似文献   

17.
Boiling histotripsy is a promising High-Intensity Focused Ultrasound (HIFU) technique that can be used to induce mechanical tissue fractionation at the HIFU focus via cavitation. Two different types of cavitation produced during boiling histotripsy exposure can contribute towards mechanical tissue destruction: (1) a boiling vapour bubble at the HIFU focus and (2) cavitation clouds in between the boiling bubble and the HIFU source. Control of the extent and degree of mechanical damage produced by boiling histotripsy is necessary when treating a solid tumour adjacent to normal tissue or major blood vessels. This is, however, difficult to achieve with boiling histotripsy due to the stochastic formation of the shock scattering-induced inertial cavitation clouds. In the present study, a new histotripsy method termed pressure-modulated shockwave histotripsy is proposed as an alternative to or in addition to boiling histotripsy without inducing the shock scattering effect. The proposed concept is (a) to generate a boiling vapour bubble via localised shockwave heating and (b) subsequently control its extent and lifetime through manipulating peak pressure magnitudes and a HIFU pulse length. To demonstrate the feasibility of the proposed method, bubble dynamics induced at the HIFU focus in an optically transparent liver tissue phantom were investigated using a high speed camera and a passive cavitation detection systems under a single 10, 50 or 100 ms-long 2, 3.5 or 5 MHz pressure-modulated HIFU pulse with varying peak positive and negative pressure amplitudes from 5 to 89 MPa and −3.7 to −14.6 MPa at the focus. Furthermore, a numerical simulation of 2D nonlinear wave propagation with the presence of a boiling bubble at the focus of a HIFU field was conducted by numerically solving the generalised Westervelt equation. The high speed camera experimental results showed that, with the proposed pressure-modulated shockwave histotripsy, boiling bubbles generated by shockwave heating merged together, forming a larger bubble (of the order of a few hundred micron) at the HIFU focus. This coalesced boiling bubble then persisted and maintained within the HIFU focal zone until the end of the exposure (10, 50, or 100 ms). Furthermore, and most importantly, no violent cavitation clouds which typically appear in boiling histotripsy occurred during the proposed histotripsy excitation (i.e. no shock scattering effect). This was likely because that the peak negative pressure magnitude of the backscattered acoustic field by the boiling bubble was below the cavitation cloud intrinsic threshold. The size of the coalesced boiling bubble gradually increased with the peak pressure magnitudes. In addition, with the proposed method, an oval shaped lesion with a length of 0.6 mm and a width of 0.1 mm appeared at the HIFU focus in the tissue phantom, whereas a larger lesion in the form of a tadpole (length: 2.7 mm, width: 0.3 mm) was produced by boiling histotripsy. Taken together, these results suggest that the proposed pressure-modulated shockwave histotripsy could potentially be used to induce a more spatially localised tissue destruction with a desired degree of mechanical damage through controlling the size and lifetime of a boiling bubble without the shock scattering effect.  相似文献   

18.
Finite curved boundaries are unavoidable in the practical field of non-invasive tissue spectroscopy. This being the case, a technique derived from the microscopic Beer-Lambert law (MBL) can be applied regardless of what geometry is assumed. Here, experimental tests on a type of time integrated spectroscopy based on the MBL for a tissue-like phantom with curved boundaries are presented. The experiments employed a cylindrical liquid phantom 56 mm in diameter, which resembles a human forearm. Two independent measurements were made on the surface of the phantom at various absorption levels (the absorption coefficients of the phantom were from 2.45 × 10−3 to 4.12 × 10−2 mm−1 at 782 nm), one in the direction along the circumference and the other along the long axis of symmetry. In both cases, the absorber concentrations were successfully recovered within error values of a few percent using a single equation.  相似文献   

19.
Axial and azimuthal flow velocities have been measured in a linear plasma device called NAGDIS-II (NAGoya DIvertor Simulator-II), along with plasma density and electron temperature, using a vector Mach probe composed of two Mach probes, one of which is for the axial flow, and the other is for the azimuthal flow. To study the effect of neutral pressure on the deduction of the Mach numbers, the ratio of upstream to downstream currents are measured by changing the neutral pressure for the deduction of flow velocities. Helium plasma was generated with pressure of 2–35 mTorr. Since the ion gyro-radius at the magnetic flux of 300 G is larger than the probe size, an unmagnetized collisionless Mach probe theory was used for the deduction of Mach numbers and their variations. In order to check the range of collisionality, plasma density (ne = 1010–1011 cm?3) and electron temperature (Te = 2–9 eV) are measured by a single electric probe using a conventional collisionless probe theory. Variations of Mach number, electron temperature and plasma density with collisionless models are to be compared with those using collisional models for different pressures where ionization and ion-neutral collision are included. Mach numbers by the collisionless model are found to be overestimated by 120% for the maximum difference even in weakly collisional plasmas. A clear flow reversal exists in the axial direction with higher pressure plasma, even in the linear machine. Azimuthal flows are also measured simultaneously along with axial flows, yet they seem to be very small in the present cold ion plasma (Ti/Te << 1).  相似文献   

20.
The purpose of this work is to confirm the effectiveness of our proposed spatially variant displacement component-dependent regularization for our previously developed ultrasonic two-dimensional (2D) displacement vector measurement methods, i.e., 2D cross-spectrum phase gradient method (CSPGM), 2D autocorrelation method (AM), and 2D Doppler method (DM). Generally, the measurement accuracy of lateral displacement spatially varies and the accuracy is lower than that of axial displacement that is accurate enough. This inaccurate measurement causes an instability in a 2D shear modulus reconstruction. Thus, the spatially variant lateral displacement regularization using the lateral displacement variance will be effective in obtaining an accurate lateral strain measurement and a stable shear modulus reconstruction than a conventional spatially uniform regularization. The effectiveness is verified through agar phantom experiments. The agar phantom [60 mm (height) × 100 mm (lateral width) × 40 mm (elevational width)] that has, at a depth of 10 mm, a circular cylindrical inclusion (dia. = 10 mm) of a higher shear modulus (2.95 and 1.43 × 106 N/m2, i.e., relative shear modulus, 2.06) is compressed in the axial direction from the upper surface of the phantom using a commercial linear array type transducer that has a nominal frequency of 7.5-MHz. Because a contrast-to-noise ratio (CNR) expresses the detectability of the inhomogeneous region in the lateral strain image and further has almost the same sense as that of signal-to-noise ratio (SNR) for strain measurement, the obtained results show that the proposed spatially variant lateral displacement regularization yields a more accurate lateral strain measurement as well as a higher detectability in the lateral strain image (e.g., CNRs and SNRs for 2D CSPGM, 2.36 vs 2.27 and 1.74 vs 1.71, respectively). Furthermore, the spatially variant lateral displacement regularization yields a more stable and more accurate 2D shear modulus reconstruction than the uniform regularization (however, for the regularized relative shear modulus reconstructions, slightly accurate, e.g., for 2D CSPGM, 1.51 vs 1.50). These results indicate that the spatially variant displacement component-dependent regularization will enable the 2D shear modulus reconstruction to be used as practical diagnostic and monitoring tools for the effectiveness of various noninvasive therapy techniques of soft tissue diseases (e.g., breast, liver cancers). Application of the regularization to the elevational displacement will also increase the stability of a three-dimensional (3D) reconstruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号